

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A PRELIMINARY ANALYSIS FOR PORTING XML-
BASED CHAT TO MYSEA

by

Claire E. R. LaVelle

June 2008

 Thesis Advisor: Cynthia E. Irvine
 Co-Advisor: Thuy D. Nguyen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE :
A Preliminary Analysis for Porting XML-based Chat to MYSEA
6. AUTHOR(S)
Claire E. R. LaVelle

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 The Monterey Security Architecture (MYSEA) is a distributed multilevel secure (MLS) computing
environment. MYSEA does not presently support chat, an Internet application that provides near-real-time
collaboration capability. Chat capability that implements the Extensible Messaging and Presence Protocol (XMPP)
standards has been recognized by the Department of Defense (DoD) as a mandatory standard. The primary goal of
this thesis is to determine if a chat server that implements the XMPP and the XMPP Instant Messaging (XMPP-IM)
standards could be ported to MYSEA.
 To accomplish this goal, a set of selection criteria was developed and the open-source jabberd14 server was
selected for this study. Its functionality was tested on different operating system environments (Fedora 7, RedHat 8,
STOP OS 7 beta). This study also includes a functional analysis of the XMPP and XMPP-IM specifications, the
related XMPP extensions supported by the jabberd14 server, a preliminary security analysis and a survey of the
jabberd14 server code.
 The results of this project show that implementation of the XMPP jabberd14-1.6.0 server on the MYSEA
platform under STOP 7 OS is feasible. The results also provide stepping stones toward a full-scale development effort
to provide MLS-aware chat services in the MYSEA network.

15. NUMBER OF
PAGES

145

14. SUBJECT TERMS Information assurance, MLS, Chat, XMPP, MYSEA, Jabber

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A PRELIMINARY ANALYSIS FOR PORTING XML-BASED CHAT TO MYSEA

Claire E. R. LaVelle
Civilian, Naval Postgraduate School

M.A., Mills College, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2008

Author: Claire E. R. LaVelle

Approved by: Cynthia E. Irvine, Ph.D.
Thesis Advisor

Thuy D. Nguyen
Co-Advisor

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Monterey Security Architecture (MYSEA) is a distributed multilevel secure

(MLS) computing environment. MYSEA does not presently support chat, an Internet

application that provides near-real-time collaboration capability. Chat capability that

implements the Extensible Messaging and Presence Protocol (XMPP) standards has been

recognized by the Department of Defense (DoD) as a mandatory standard. The primary

goal of this thesis is to determine if a chat server that implements the XMPP and the

XMPP Instant Messaging (XMPP-IM) standards could be ported to MYSEA.

To accomplish this goal, a set of selection criteria was developed and the open-

source jabberd14 server was selected for this study. Its functionality was tested on

different operating system environments (Fedora 7, RedHat 8, STOP OS 7 beta). This

study also includes a functional analysis of the XMPP and XMPP-IM specifications, the

related XMPP extensions supported by the jabberd14 server, a preliminary security

analysis and a survey of the jabberd14 server code.

The results of this project show that implementation of the XMPP jabberd14-1.6.0

server on the MYSEA platform under STOP 7 OS is feasible. The results also provide

stepping stones toward a full-scale development effort to provide MLS-aware chat

services in the MYSEA network.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PURPOSE OF STUDY..1
C. ORGANIZATION OF THIS STUDY..2

II. BACKGROUND ..3
A. CHAT..3
B. EXTENSIBLE MESSAGING AND PRESENCE PROTOCOL

(XMPP) ...10
1. XMPP Server Responsibilities. ...11
2. XMPP Client Responsibilities...12
3. Security Issues ..12

C. JABBER..13
D. MONTEREY SECURITY ARCHITECTURE (MYSEA).........................14
E. XTS-400 ARCHITECTURE...15
F. SUMMARY ..16

III. CHAT ENGINES SELECTION...17
A. CHAT SERVERS...17

1. Selection Criteria for the Server...18
2. Outcome..23

B. CHAT CLIENTS ...23
1. Selection Criteria for the Clients ..23
2. Outcome..24

C. SUMMARY ..24

IV. EXPERIMENTATION ...25
A. FUNCTIONALITIES OF THE JABBERD14 SERVER25
B. TESTING OVERVIEW ..28

1. Test Plan ...29
C. REDHAT 8 PLATFORM ...34

1. Configuration Issues with the Server...35
2. Installation of Jabber14-1.4.2 Server ...35
3. Testing of Jabber14-1.4.2 Server..37
4. Summary for the RedHat 8 Platform...37

D. FEDORA 7 PLATFORM..37
1. Installation of Jabberd14-1.6.1.1 Server..37
2. Testing of Jabberd14-1.6.1.1 Server...38
3. Test Analysis...45
4. Summary for the Fedora 7 Experiment...45

E. XTS400 STOP 7 PLATFORM ...46
1. Installation of Jabberd14-1.6.0 Server...46
2. Testing Jabberd14-1.6.0 Server ..48

 viii

3. Test Analysis...57
4. Summary of the XTS-400 Experiment...57

F. SUMMARY ..57

V. TECHNICAL AND SECURITY ISSUES ...59
A. CODE SURVEY...59

1. External Library Dependencies..59
2. XEP’s Dependencies ..62
3. Structure of the Code of the Jabberd14-1.6.0 Server66

a. Entry Point of Jabberd14-1.6.0 Server...................................69
b. Exploring XEPs...70

B. TECHNICAL ISSUES...73
C. SECURITY CONCERNS ...73
D. SUMMARY ..74

VI. FUTURE WORK AND CONCLUSION ...75
A. TESTING..75
B. CODE REVIEW ..76
C. CONCLUSION ..76

APPENDIX A: XMPP EXTENSIONS ...77

APPENDIX B: REDHAT 8 INSTALLATION INSTRUCTIONS79

APPENDIX C: FEDORA 7 INSTALLATION INSTRUCTIONS...........................89

APPENDIX D: XTS-400 INSTALLATION INSTRUCTIONS95

APPENDIX E: INSTALLATION INSTRUCTIONS FOR GAJIM ON
WINDOWS XP PROFESSIONAL ..103

APPENDIX F: TEST PROCEDURES...105

LIST OF REFERENCES..121

INITIAL DISTRIBUTION LIST ...127

 ix

LIST OF FIGURES

Figure 1. Simple peer-to-peer network. From [13] ...4
Figure 2. Simple Client/Server network. From [13] ...5
Figure 3. MYSEA Architecture Overview. From [28] ...15
Figure 4. Network Topology of Test Setup...28
Figure 5. Configuration settings for group chat rooms ...36
Figure 6. Library dependencies ...61
Figure 7. XEPs dependency tree ...65
Figure 8. jabberd14-1.6.0 module composition ..68
Figure 9. The modules Directory...71

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Evolution of IM and Chat — Event Timeline ...8
Table 2. Requirements for the server ...21
Table 3. XEP by server ..22
Table 4. Account management...30
Table 5. Presence management..32
Table 6. Instant Messaging (IM) management ..32
Table 7. Multi-User Chat (MUC) management ...33
Table 8. Service discovery and Jabber User Directory (JUD) management34
Table 9. Account management on the Fedora 7 platform..39
Table 10. Presence management on the Fedora 7 platform ...41
Table 11. Instant Messaging (IM) management on the Fedora 7 platform......................42
Table 12. Multi-User Chat (MUC) management on the Fedora 7 platform43
Table 13. Account management on the STOP 7 platform ...49
Table 14. Presence management on the STOP 7 platform ..52
Table 15. Instant Messaging (IM) management on the STOP 7 platform.......................53
Table 16. Multi-User Chat (MUC) management on the STOP 7 platform......................54
Table 17. Service discovery and Jabber User Directory (JUD) management on the

STOP 7 platform..56
Table 18. Directly-supported XEP...63
Table 19. Indirectly-supported XEPs...64
Table 20. XEPs implemented in the modules directory...72

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ABBREVIATIONS AND ACRONYMS

ACL Access Control List

AES Advanced Encryption Standard

BBS Bulletin Board System

C Confidential

COTS Commercial Off The Shelf

CVS Version Control System

DAC Discretionary Access Control

DNS Domain Name Server

DoD Department of Defense

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transport Protocol

IETF Internet Engineering Task Force

IM Instant Messaging

IMAP Internet Message Access Protocol

IP Internet Protocol

IRC Internet Relay Chat

JID Jabber Identifier

JUD Jabber User Directory

MAC Mandatory Access Control

MLS Multilevel Secure/Multilevel Security

 xiv

MUC Multi-User Chat

MYSEA Monterey Security Architecture

OLM On-line Messages

POSIX Portable Operating System Interface

RBAC Role-Based Access Control

RFC Request For Comments

S Secret

SASL Simple Authentication and Security Layer

SHA Secure Hash Algorithm

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SSS Secure Session Services

STOP Secure Trusted Operating System

SVN Subversion

TCB Trusted Computing Base

TCP Transport Control Protocol

TLS Transport Layer Security

TOE Target of Evaluation

TS Top Secret

XEP XMPP Extension Protocols

XSF XMPP Standards Foundation

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

 xv

ACKNOWLEDGMENTS

I would like to thank Dr. Cynthia Irvine and Thuy Nguyen for their guidance and

patience all through the process of this thesis.

This material is based upon work supported by the National Science Foundation

under Grant No. CNS-0414102. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

Near-real-time communication capability is a valuable collaboration tool. Chat

provides that service via instant messaging and group chat room. Today, there are many

chat protocols1, but XMPP has been selected by the Department of Defense (DoD)’s

Information Technology Standards Council as a “mandatory standard.” [1]. As a result,

incorporating chat capability into the Monterey Security Architecture (MYSEA)

environment is highly desirable. MYSEA provides a secure distributed networking

computing environment that supports commercial-off-the-shelf (COTS) products

augmented with high assurance components that enforce the multilevel security (MLS)

policy. However, the multilevel nature of the MYSEA environment requires special

testing and a complex porting effort. This study is the first step towards porting chat to an

MLS environment such as MYSEA.

B. PURPOSE OF STUDY

The goal of this study is to elicit requirements for a chat server that follows the

XMPP standards [2], [3] and determine the best open source XMPP server available

today that could be ported to run on a high assurance MLS server. To validate the choice

made based on a set of selection criteria, the selected XMPP server is installed on

different platforms and its basic behavior is tested. The lessons learned from the

experimentation will help to define the important technical and security issues that will

need to be addressed to develop an MLS-aware chat service for the MYSEA

environment.

1 Examples of other protocols are AIM [4], Sametime [5], ICQ [6], and IRC [7], [8].

 2

C. ORGANIZATION OF THIS STUDY

This study presents its results in the following structure:

- Chapter II gives background information relevant to the porting of an

XMPP chat server to the MYSEA environment. The topics

addressed are chat, Extended Messaging and Presence Protocol

(XMPP), Jabber and the Monterey Security Architecture

(MYSEA).

- Chapter III describes the process of selecting an XMPP open source chat

server to port to the MYSEA environment.

- Chapter IV reports on the installation and testing of the selected XMPP

chat server.

- Chapter V discusses the technical and security issues that need to be

addressed before the porting of the XMPP server can start.

- Chapter VI outlines future work that needs to be performed in order to

accomplish a successful port of the XMPP server, and provides

a conclusion to this study.

 3

II. BACKGROUND

This chapter provides background information on various topics relevant to the

porting of a jabber server in the MYSEA environment. Section A relates to chat, Section

B to XMPP, Section C to Jabber, Section D to Monterey Security Architecture (MYSEA)

and the last section relates to the XTS-400.

A. CHAT

Instant Messaging (IM) is pre-Internet (mid 1960s) [9] and can be equated to

instantaneous e-mail. It allows two users to communicate based on typed text in almost

real-time. It was at first implemented on a peer-to-peer architecture (see Figure 1). It is

still very popular and is found on most platforms ranging from general purpose

computers to mobile devices with limited functionality. It is the starting point for chat.

Chat is more recent and has incorporated IM. Chat is also a text-based near real-

time communication protocol, but has the advantage of supporting multiple users

simultaneously in the same conversation via the concept of group chat rooms. A room is

a virtual place that more than one user can sign into and exchange ideas about the topic of

the room. It was designed to take advantage of the client-server architecture. However,

major chat providers run their services on peer-to-peer networks, such as Google Talk or

Skype [10] [11].

The main technological difference between e-mail and IM or chat is the

mechanism by which the messages are distributed. In the e-mail scheme, messages are

stored on servers and users need to “ask” for messages in order to get them (by login or

clicking on the inbox), while in IM or chat, messages are pushed to clients2. Today, IM is

the core of chat technology because chat, which offers multi-user chat functionality, can

also support instant messages between two users. For the purpose of this thesis, IM

2 This is a general fact when two users are active. Chat has storage and delivery policies that use a

push algorithm when a user is off-line.

 4

means the ability to communicate between two users only and chat means the ability to

communicate with more than one user in a “room” context.

Figure 1 and Figure 2 show the basic topology of a peer-to-peer network and a

client-server architecture, respectively. In the peer-to-peer architecture, there is no single

point of failure. However, the scalability is not as great as for a client-server network

because as the network grows there is overhead associated with managing the network

and some nodes must fill that duty. Those nodes are elevated to the role of coordinator

and could become a point of failure if not maintained properly. Becoming a “super-node”

is voluntary and maintaining the service relies on individual expertise. Those two factors

might constrain the size of the network. In the client-server architecture, the single point

of failure associated with the server can be overcome by introducing redundancy. A

client-server architecture can grow to be very large by adding servers without

destabilizing the infrastructure, because of its distributed quality [12]. XMPP, which will

be discussed in the next section, “is not wedded to any specific network architecture, to

date it usually has been implemented via a client-server architecture [2]”.

Figure 1. Simple peer-to-peer network. From [13]

 5

Figure 2. Simple Client/Server network. From [13]

The goals of chat along with the requirements for both servers and clients are

described in the Internet Relay Chat (IRC) RFC 2810 through 2813. The IRC protocol

emerged in order to allow for text-based conferencing, which came out of the Bulletin

Board concept [14] [15]. IRC was invented to allow multiple users to communicate

together via forums. The basic concepts are documented in a previous RFC numbered

1459 of the same name (IRC). RFC 2811 – Internet Relay Chat: Channel Management

specifies how the characteristics and properties of channels, called forums, are managed

by IRC servers [16]. RFC 2812 – Internet Relay Chat: Client Protocol, builds on the IRC

architecture of the two previous RFCs and defines the client protocol [17]. RFC 2813 –

Internet Relay Chat: Server Protocol describes the server protocol [18].

IM legacy systems such as AOL and others run proprietary software on dedicated

servers hosted on hardware owned by service providers. Today, serious open source chat-

related projects such as Jabber are gaining in popularity using XMPP, a subset of XML,

to build their protocols. Table1 summarizes a time line of events that relate to IM, chat

and XML.

 6

Date Events

Mid 1960s IM is supported on multi-user OSes like Multics and CTSS [19].

1980s Chat features are introduced to IM via the Bulletin Board System (BBS) concept [15]. Bulletin Board System

software allowed a computer to use the phone system to dial (or Telnet) into a server in order to download

programs and data, read news and communicate with other users connected to that same network. BBSs are

the precursors of the way the Internet works today in that they brought multiple applications into one network

(like gaming, exchanging files) and allowed for interaction between users of that network. However, it was

localized phenomenon because it required users to dial into a computer in order to participate in the network.

The cost of participating in remote networks was proportional to the buying power of users and their desire to

spend lots of money on long distance phone calls [20].

Late 1980s

through early

1990s

AOL (America On-Line) capitalizes on Quantum Link online service for Commodore 64 computers, which

offered user-to-user messages with logged on users and called it On-Line Messages (OLM) [9].

 7

 Screen shot of a Quantum Link OLM

1988 Development of IRC (Internet Relay Chat)

Mid 1990s Graphical User Interface (GUI)s similar to today’s interfaces start appearing. In 1996 a company called

Mirabilis, later bought by AOL, came out with ICQ, an instant messaging client, which became AOL Instant

Messenger in 1997. AOL was given two patents for instant messaging technology. At that time, instantaneous

communication became wide spread and parties such as Excite, Yahoo, MSN started offering their own

version of instant messaging. Those protocols could not interact, which forced users to have multiple

subscriptions if they wanted to participate in more than one network.

1993 Publication of RFC 1459 IRC (Internet Relay Chat Protocol). This document is a response to the multiple

protocols problem described above. Implementations conformant to the core IRC protocol are interroperable.

February 1998 XML 1.0 became a W3C recommendation. Like HTML, XML has tags, but the main difference is that these

tags can be user defined. XMPP defines a subset of XML tags. XML is still on version 1.1.

 8

February 2000 Publication of RFC 2778 – A model for Presence and Instant Messaging and RFC 2779 – Instant Messaging /

Presence Protocol [21] [22]. RFC 2778 defines the entities that participate in a presence and instant

messaging model, their roles, the services provided and the terminology associated with the service. RFC

2779 –Instant Messaging / Presence Protocol (IMPP), has the goal of defining the minimum requirements for

all IMPP, so that different implementations can “understand” each other and the protocol can become vendor-

independent.

April 2000 Publication of RFC 2810 –IRC: Architecture, RFC 2811 –IRC: Channel Management, RFC 2812 – IRC:

Client Protocol and RFC 2813 – IRC: Server Protocol (see description above and [14] [16] [17] [18]).

2000 Jabber is developed as an intermediary between other IM protocols. Because of the large number of vendor-

specific protocols in the chat space, there was a need for software that was able to translate from one vendor

to another. This was Jabber’s first motivation as an open source project. Jabber uses XML.

October 2004 Publication of RFC 3920 –XMPP: Core, RFC 3921 – XMPP: Instant Messaging and Presence, and RFC

3923 –End-to-End Signing and Object Encryption for the Extensible Messaging and Presence Protocol.

These documents will be discussed in detail in Section B. Extensible Messaging and Presence Protocol

(XMPP) [2] [3] [23].

Table 1. Evolution of IM and Chat — Event Timeline

 9

This project focuses on the XMPP and XMPP-IM protocols, which are based on

RFC 2778 –A Model for Presence and Instant Messaging and RFC 2779 –Instant

Messaging / Presence Protocol [21], [22]. RFC 2778 describes an abstract model, which

includes the various presence and IM-aware entities involved, defines terminology and

outlines the services that the system provides. The goal of that RFC is to lay a foundation

so that implementers in the field are able to communicate with a set of common terms.

The model presented in RFC 2778 does not discuss architectural issues, but instead

outlines the fundamental components to support two services: a Presence Service and an

Instant Messaging Service. A Presence Service allows users to advertise their status

(offline, available, away, busy and so on) and an Instant Messaging Service supports the

delivery of text messages between two users in near real-time.

In order to support Presence, a chat system must implement basic functionalities,

such as namespace administration, common presence format, presence lookup and

notification, presence caching and replication, and performance. In order to support

Instant Messaging (IM), a chat system must implement basic functionalities such as

common message format, reliability, performance and presence format. A detailed

description of those requirements can be found in the RFCs mentioned above.

In addition to these functionality requirements, there are also security

requirements such as access control, message authentication integrity and confidentiality.

Access control refers to blocking unauthorized entities from viewing restricted

information, as well as letting the legitimate subscribers view authorized information.

Encryption is advocated to accomplish confidentiality and to detect tampering or error

and replay type attacks in the context of network communication. Other security

considerations, such as the amount of privilege that user as well as administrator roles

should have, the importance of having the protocol detect spoofing which could lead to

denial of service either for one particular user or for the entire system, are discussed in

[22].

 10

B. EXTENSIBLE MESSAGING AND PRESENCE PROTOCOL (XMPP)

XMPP is a protocol for streaming XML elements. “Streaming is a technique for

transferring data such that it can be processed as a steady and continuous stream [24].”

Streaming is well known with technologies such as audio or video because the technique

allows for the browser to start displaying the information even though not all the bytes

have arrived yet. Even though chat does not necessarily involve a browser, the streaming

principle comes from the fact that there is one stream for an entire conversation. “An

XML stream is a container for the exchange of XML elements between any two entities

over a network [2].” An XML stream is represented by the tag stream symbolized by

<stream> </stream> (the / represent the ending of the stream). A stream is the root level

of communication. Streaming XML can be used in many contexts, including chat. In this

context, XMPP streams XML stanzas to allow for the exchange of structured information

between two entities in a network. Stanzas are defines in RFC 3920 as “a discrete

semantic unit of structured information that is sent from one entity to another over an

XML stream [2].” Stanzas are subsets of streams. XMPP meets the IM and Presence

requirements of RFC 2779 [22] and provides an extended framework for exchanging

XML data for chat. There are three main documents that describe the protocol; RFC

3920: XMPP –Core [2], RFC 3921: XMPP –Instant Messaging and Presence [3] and

RFC 3923 –End-to-End Signing and Object Encryption for the Extensible Messaging and

Presence Protocol [23]. The protocols defined in these RFCs can be applied to different

network architectures. However, to date, XMPP has been commonly used in the client-

server architecture and thus the RFCs are framed with in the context of that architecture.

XMPP defines three functional entities: servers, clients and gateways. Gateways translate

messages between chat services that implement XMPP and those that do not use XMPP.

The standard for gateways is included in RFC 3922 –Mapping XMPP to the IETF's

CPIM specifications [25], which defines the mapping between XMPP and the Common

Presence and Instant Messaging (CPIM) protocol.

 11

In order for entities to communicate, there is a need for unique identifiers. For

historical reasons3, the address of an XMPP entity is called a Jabber Identifier (JID).

Those addresses are formed based on a domain identifier, a node identifier and a resource

identifier, respectively (node@domain/resource).

XMPP only binds to TCP connections. “In the context of client-to-server

communications, a server must allow a client to share a single TCP connection for XML

stanzas sent from client-to-server and from server-to-client. In the context of server-to-

server communications, a server must use one TCP connection for XML stanzas sent

from the server to the peer and another TCP connection for stanzas from the peer to the

server, for a total of two TCP connections [2]”. A stream will stay open until either an

error occurs or the client tears the session down.

XMPP only uses a subset of the XML vocabulary. The stanzas for chat are XML

fragments that are associated with one of the following tags: <message>, <presence> and

<iq>. There could be other tags/elements inside each stanzas. All of those tags have

attributes and some of those attributes are shared among them.

The responsibilities of XMPP servers and clients are given below.

1. XMPP Server Responsibilities.

The server has the following responsibilities:

- Managing connections (client-to-server –port 5222 and legacy port 5223– and

server-to-server –port 5269),

- Routing XML stanzas among entities over XML streams,

- Tracking resource binding—resource binding is the action of associating a

resource with a stream and a user ID. This is optional, but highly encouraged

and can be required by either the server or the client.

3 XMPP was formulated by the same people who are managing the Jabber Software Foundation. So

“J” stands for Jabber.

 12

- Support for Transport Layer Security4 (TLS) for encrypting XML streams [2].

This protocol protects against eavesdropping, tampering and message forgery.

- Support for Simple Authentication and Security Layer5 (SASL) for

authentication of XML streams [2].

- Support for Unicode normalization and string normalization of addresses, and

XML stream via the application of Nameprep6 and Stringprep7.

- Support for basic stanza semantics of the basic elements <message>,

<presence> and <iq>,

- Generating errors related to streams, SASL, TLS, and XML stanzas.

2. XMPP Client Responsibilities

The client connects directly to a server via port 5222 over a TCP connection and

uses XMPP to take advantage of the services that are available on the server. In addition,

the client must support:

- XML streams including the use of TLS and SASL [2],

- Basic stanza semantics of <message/>, <presence/> and <iq/>,

- Generation of errors related to streams, SASL, TLS, and XML stanzas.

3. Security Issues

XMPP addresses confidentiality and integrity with TLS and addresses mutual

authentication with SASL (between client-server and server-server). Even though RFC

4 TLS is the successor to Secure Socket Layer (SSL). It provides secure communications in the

Internet through cryptography.
5 The SASL protocol is represented by a series of challenges and responses that the entities send each

other. SASL is usually used with TLS as they complement each other to address basic communication
security issues in the Internet.

6 Nameprep is the process of Unicode normalization. It allows for case-folding to lowercase and
removal of some generally invisible code points before it is suitable to represent a domain. Nameprep is
defined in RFC 3491.

7 Stringprep is uses to normalize a string before it is put on the wire. Stringprep is defined in RFC
3454.

 13

3920 requires the implementation of both the SASL and TLS mechanisms to satisfy the

security demands of RFC 2779 –Instant Messaging / Presence Protocol Requirements,

RFC 3923 –End-to-End Signing and Object Encryption for the Extensible Messaging and

Presence Protocol (XMPP) discusses additional mechanisms that can be used to meet the

security requirements prescribed in RFC 2779. The first mechanism is end-to-end signing

and the second is object encryption [23]. Both the signing and the encryption are done

using Secure/Multipurpose Internet Mail Extensions (S/MIME)8. Using S/MIME

improves the confidentiality of messages as it encrypts the entire message including the

header information. However, since S/MIME requires public keys, deleted or out–of-date

certificates can cause problems with decryption of messages [23]. RFC 3923 requires that

the following cryptographic algorithms be supported for an implementation to be

compliant:

- SHA-1

- RSA with the SHA-1 signature algorithm

- RSA key transport

- AES-128 encryption algorithm in CDB mode [23]

RFC 3920 contains advices regarding the order in which the protocol should be

initiated. For example, “if the TLS negotiation occurs between two servers,

communications MUST NOT proceed until the DNS hostnames … have been resolved”

or “if the initiating entity chooses to use TLS, TLS negotiation MUST be completed

before proceeding to SASL negotiation.” [2] Strong implementation of this advice can

minimize the risks of malicious message injections.

C. JABBER

Jabber is an open-source XML streaming protocol, and is a precursor to the

XMPP standard. Jabber and XMPP are often confused because the same non-profit

organization, namely the Jabber Foundation, is behind both the XMPP standards (RFCs

8 Secure/Multipurpose Internet Mail Extensions (S/MIME) uses certificates, so a certificate authority

is assumed here.

 14

3920 and 3921) and the jabberd14 and jabberd2 projects. The distinction between Jabber

and XMPP is that XMPP is a standard and Jabber an implementation of that standard9.

There are other projects (commercial and open-source) that adhere to the XMPP standard

(Chapter IV shows some open-source projects). In addition to the core functionalities

based on the XMPP standard, the Jabber foundation is continually working on extensions

[27]. Extensions are not included in any RFCs, but follow the basic logic of those

documents and are written in the same format/language, giving no implementation

details. Those extension documents are the basis for different implementations in the

open-source community. Extensions allow both clients and servers to gain functionality,

and improve usability and security.

D. MONTEREY SECURITY ARCHITECTURE (MYSEA)

“MYSEA is an innovative architecture to provide trusted security services and

integrated operating system mechanisms that can protect distributed multi-domain

computing environments from malicious code and other attacks [28].” This architecture is

composed of COTS and of high assurance software. The COTS components allow users

to run productivity applications while core elements of the architecture are high assurance

and enforce policies (Bell-LaPadula and Biba [29] [30]). “The purpose of MYSEA is to

provide a trusted distributed operating environment for enforcing multi-domain security

policies, which supports unmodified COTS productivity applications [28].”

Figure 3 shows the MYSEA architecture. Users on the Multilevel Security (MLS)

network can log in at their classification level via a Trusted Path Extension device (TPE).

The MYSEA server supports SMTP, IMAP and HTTP. Based on this thesis and some

additional porting steps, chat services could be implemented on MYSEA. MYSEA also

uses IPsec to establish protected channels at different session levels on the MLS network.

Part of the high assurance core that resides on MYSEA and makes it a MLS

system is called the Secure Session Services (SSS). The purpose of this high assurance

9 Note that the use/invention of XMPP is anterior to the creation/acceptance of XMPP as a standard.

Depending on the version of the software, Jabber can be considered more or less compliant to the XMPP
protocol. The differences between core “Jabber protocols and XMPP” can be found in RFC 3920 Appendix
D [2].

 15

code is to listen on the different ports (services which MYSEA supports) and then spawn

processes executing different applications at the right classification level. (These

spawned applications are not trusted.) SSS is a trusted process that is functionally

equivalent to the inetd daemon that manages network services on Unix/Linux systems.

The ability to run an application as an inetd-spawned daemon is a critical MYSEA

porting requirement.

Figure 3. MYSEA Architecture Overview. From [28]

E. XTS-400 ARCHITECTURE

MYSEA runs on a platform called an XTS-400 and made by BAE [31]. The XTS-

400 is a multilevel secure computer system [32]. The XTS-400 is the result of combining an

Intel x86 for the hardware and Secure Trusted Operating Program (STOP) for the operating

system. “The XTS-400 architecture can host, and be trusted to separate multiple, concurrent

data sets, users, and networks at different sensitivity levels [33].” This architecture provides

 16

both a trusted and non-trusted environment. The trusted environment is for performing

administrative tasks and executing privileged applications. The non-trusted environment

supports both custom and binary-compatible Unix/Linux applications. The interface to the

system is a command-line Unix/Linux like environment. Even though the XTS-400 can be

used in many different ways—for example, as a workstation—MYSEA uses it as a MLS

server.

Currently MYSEA services run on STOP 6.3, but these will migrate to STOP 7. In

addition to the traditional discretionary access control (DAC) and mandatory access control

(MAC), STOP 7 also provides Role-Based Access Control (RBAC) [32]. RBAC does not

assign permission to users directly. Users get permission based on the role that they are

assigned. This makes policy management easier and allows access controls to be tailored to

an organization’s needs. The use of RBAC to control users is different than with a traditional

Access Control List (ACL) mechanism because it uses groups. Grouping users allows for

easier administrative management as users do not have to be granted permissions

individually, however, it might be less granular. The RBAC does not invalidate the Bell-

LaPadula [29] multilevel security policy and the Biba [30] multilevel integrity policy [32].

Because of its rating, and accreditation, the STOP OS is often used for guard technology.

F. SUMMARY

This chapter provided an overview of Chat, XMPP and Jabber. It also clarified some

definitions between terms and provided a historical time line for the technologies. In

addition, this chapter summarized the purpose and architecture of the MYSEA testbed and

highlighted the important security mechanisms that pertain to this project of the XTS-400.

The next chapter presents the selection process of the XML-based chat server needed to

continue this study.

 17

III. CHAT ENGINES SELECTION

For this project an XMPP server that can be ported to run on the MYSEA server

must be chosen. The selected server must meet a set of MYSEA-specific requirements.

This chapter first gives an overview of the available open source chat servers and the

XMPP extensions that might be suitable to this project. Then, it prioritizes the selection

criteria and summarizes all of the servers that were considered. Finally it presents the

selected XMPP server and the rational for its selection.

A. CHAT SERVERS

The open source XMPP community is centered around jabber.org [34] and

xmpp.org [35], both of which promote XMPP as the language for chat and Instant

Messaging (IM). Each organization has a website. The jabber.org site lists most of the

servers with open source-like licenses available today. Most of those implementations

accommodate a broad range of host platforms including Windows, Linux, Macintosh,

Solaris, HP-UX, AIX and FreeBSD. The servers are written in a variety of programming

languages ranging from C to Erlang, in addition to Java, C++ and Perl. The servers

adhere to the XMPP standards expressed in the different RFCs mentioned in the

background chapter, but implement different optional functionalities, called extensions.

The RFC compliant core functionalities are insufficient to make a server

competitive in today’s market. This is the reason for the many extensions developed by

the XSF (XMPP Standards Foundation). The XSF “develops extensions to XMPP

through a standards process centered around XMPP Extension Protocols (XEPs) [27].”

The extensions go through a review and approval process by the XMPP Council “and

modification based on implementation experience and interoperability testing” is also

part of the process of developing new extensions [27]. The XEPs listed in Appendix A

are in some stage within the reviewing/approval process. Most of the extensions have

been assimilated as part of the core code, but not all. An example of an extension that is

external to the core server and that must be installed separately is the Multi-User Chat

(XEP-0045). This extension gives the ability to the server to support group chat rooms.

 18

1. Selection Criteria for the Server

The criteria that were considered in order to choose a jabber server to port to

MYSEA are listed below. Since all requirements are not imperative, there is a list of

“Must have” requirements and a list of “Nice to have” requirements. The requirements

are ordered by importance in their respective lists, with the most important first. A brief

explanation follows each requirement.

“Must have” requirements:

- Open source license. A license that lets anyone copy, use and modify

the code of the server and library dependencies freely.

- inetd capability. MYSEA does not support standalone daemon services

and requires all applications to run as inetd processes. This is because

ported applications generally have low integrity and should only run as

single-level processes (i.e., the session level of the user). In MYSEA, the

inetd capability is handled by a number of SSS processes, each of which

listens to a specific port. For XMPP, the SSS process designated to

handle XMPP traffic would listen on port 5222 (client-to-server socket)

and would spawn chat processes at the classification level of the users’

session.

- POSIX threads. STOP OS 6.x does not support pthreads library and

thus MYSEA can only support non-threaded applications at this time.

This condition will change when MYSEA is ported to STOP OS 7,

which supports pthreads.

- Written in C or C++. C is native to MYSEA. Having the code of the

server written in C or C++ will facilitate the porting not only because

necessary compilers are already available, but because there would be no

need to study the security issues associated with using another language

that is not currently implemented.

 19

- Flat file storage. The server should not require a database in order to

operate. At the present, MYSEA does not support any databases. A

server that requires a database for information storage would entail an

extra step in the porting process.

- Static IP. The server needs to be able to operate with a static IP address

in the MYSEA environment.

- Code size. The main exercise for the porting is to modify the code in

order to comply with what STOP OS 6.x/MYSEA supports. If the code

is small, the code review and the modification to the code will be more

manageable and easier to test.

“Nice to have” requirements:

- RFC compliant. The XMPP protocol is documented in RFC 3920 and

3921, but it is up to each chat server team to implement the

requirements. The result might be more or less compliant with the

specification standard.

- Maturity. A large user population and following of administrators is

likely to result in richer resources (mailing list, forums) and better

documentation. It also implies a better tested code base.

- Version control. The use of versioning software such as Version

Control System (CVS) or Subversion (SVN) will allow for systematic

code maintenance.

- IPv6. Although the current MYSEA does not support IPv6, a future

MYSEA version will include that capability.

- Feature full. The ability to support a fair number of XEPs will

guarantee that the server is keeping up with the main stream chat servers

and can support features that modern clients implement.

 20

- Code Modularity. The porting effort would be easier if the code is

modular, i.e., composed of logical parts/modules. Modular

decomposition also facilitates better analysis of architectural properties

such as layering, cohesion, and coupling.

Table 2 and Table 3 identify the servers examined for this project. In Table 2, the

columns list the name of the projects (only open source projects were considered for this

porting effort) and the rows list the requirements (mixing the “Must have” with the “Nice

to have” in the order of importance). An “X” indicates that the server fulfills that

requirement and a blank indicate that either the requirement is not met or that further

code analysis is necessary to determine the ability of the server to meet the particular

requirement. The last row summarizes the number of requirements fulfilled by each

server. Table 3 lists all of the features supported by the different servers. Some of those

features are part of the core and some require separate software to be installed. The XEPs

are in numerical order, and are not ordered by importance. An “X” indicates that the

server either already has incorporated the extension in its code or can support that

additional functionality, as in the case of MUC or JUD. More details regarding each XEP

listed in Table 3 can be found in Appendix A and a full implementation/technical

description can be found on the web [27].

It is important to note that some of the extensions depend on other extensions that

may not be listed in the Table 3 (see Chapter V). Also, some of the requirements for this

project might not be described in the documentation and can only be discovered as the

code is installed, analyzed and executed.

 21

Requirements

Ejabberd

[36]

jabberd14

[37]

jabberd2

[38]

Openfire

[39]

Tigase

[40]

MUST HAVE REQUIREMENTS

Open source X X X X X
Inetd
POSIX thread X X X X X
Written in C/C++ X X
Flat file storage X X X
Static IP X X X X X
Code size

NICE TO HAVE REQUIREMENTS

Authentication X X X X X
Encryption X X X X X
RFC compliant X X X X X
Maturity X X X X X
Version control X X X
IPv6 X X X
Code Modularity X X X

TOTAL 11 12 11 7 8

Table 2. Requirements for the server

 22

XEP

number
Ejabberd jabberd14 jabberd2 Openfire Tigase

XEP-0004 X X X
XEP-0012 X X X X X
XEP-0013 X X
XEP-0016 X X X X X
XEP-0020 X
XEP-0030 X X X X X
XEP-0033 X X
XEP-0045 X X X X
XEP-0047 X
XEP-0048 X X X
XEP-0049 X X X X X
XEP-0050 X X X X
XEP-0054 X X X X X
XEP-0059 X
XEP-0060 X X
XEP-0065 X X
XEP-0066 X
XEP-0077 X X X X
XEP-0079 X
XEP-0085 X
XEP-0092 X X X X X
XEP-0095 X
XEP-0096 X X
XEP-0100 X
XEP-0106 X
XEP-0114 X X X X X
XEP-0115 X X
XEP-0124 X X
XEP-0138 X X X
XEP-0145 X X
XEP-0153 X X X X X
XEP-0163 X X
XEP-0191 X
XEP-0199 X X X
XEP-0202 X X
XEP-0203 X X
XEP-0206 X X X
TOTAL 19 15 15 29 21

Table 3. XEP by server

 23

2. Outcome

Based on the requirements score in Table 2, jabberd14 was chosen. However, it is

important to note that the inetd requirement was not met. The inetd requirement

represents a challenge for MYSEA as newer applications are built with standalone

daemons for performance reasons [41].

B. CHAT CLIENTS

The open source XMPP clients were chosen based on their compatibility both

with the platforms on which they were to be installed and with the different servers that

were implemented and tested (see Chapter IV).

1. Selection Criteria for the Clients

XMPP clients do not need to be very sophisticated. As long as they can perform

the basic chat functionalities reliably – registering with the chat server, participating in

instant messaging and creating and configuring group chat—, they can be considered

candidates. However, below are some criteria that should be considered before choosing

an XMPP-aware client for deployment in the MYSEA environment. The requirements

are arranged by order of importance.

- Open source license. A license that lets anyone copy, use and modify the

code of the client.

- Multi-platform. The client should be available on more than one platform

so that users are able to use a variety of operating systems.

- Authentication capability. Mutual application-level authentication is

highly desirable between the clients and servers and would complement

the user authentication provided in MYSEA for user login and session

level negotiation.

- Encryption capability. Encryption is highly recommended for

communication over a network and would complement communications

protection already supported in the MYSEA environment.

 24

- Multi-language. In a coalition use case, the server might support users

from other nations with other languages besides English.

- Maturity. A mature project implies a popular product with well-

maintained code, documentation and available customer support.

- Feature full. Using a server and clients that can support approved XMPP

extensions will improve the user experience and may augment application-

level security.

For more information on open source client projects, a list is available on the web at [34].

2. Outcome

Although many chat clients meet the requirements described above, PSI [42],

Gajim [43] and Pidgin [44] were used for the different testing described in Chapter IV.

C. SUMMARY

This chapter summarized the porting requirements used to select the jabberd14

server for use in MYSEA. The XMPP extensions supported by different servers are also

addressed. Most modern clients support all of the features that the jabberd14 server

supports. The three clients chosen fulfill all of the requirements mentioned in the

selection criteria of this chapter (sub-section B-1). The next chapter describes the

experimentation with the jabberd14 server on Linux and XTS platforms. It also includes

the test plan and a summary of the problems encountered.

 25

IV. EXPERIMENTATION

The process to port an application to MYSEA involves two preliminary steps.

First, install and test the application on a RedHat 8 system first, and then on a standalone

XTS-400 system. If these two steps are successful, any problems encountered

subsequently are MYSEA specific and can be addressed more easily. This thesis follows

this methodology. The first platform on which the Jabber server was installed and tested

is the RedHat 8 operating system (OS). This platform was used because MYSEA

currently runs on the STOP 6.3 OS which supports the RedHat 8 APIs. Since, MYSEA is

scheduled to migrate to STOP OS 7, the jabberd14 server was also tested on Fedora core

7 OS and STOP 7 OS, which supports Linux 2.6 APIs.

The first section of this chapter lists the functionalities of the jabberd14-1.4.x

server and of the jabberd14-1.6.x server. The second section discusses the testing plan

and procedures. The remaining sections discuss each installation in detail and, for

selected sections, the test results are also included.

A. FUNCTIONALITIES OF THE JABBERD14 SERVER

The jabberd14 server adheres to [2], [3] standards and to a number of XEP

standards [27]. For this thesis, experiments were conducted on two different versions of

jabberd14, version 1.4.x and version 1.6.x, whose functionalities are described below.

The following functionalities are supported by jabberd 1.4.x as described in the

Jabberd 1.4.x Administration Guide (an installation guide) [45]:

- Accept TCP socket connections from compatible clients and server-

side components

- Manage XML streams to and from clients and components

- Deliver the core Jabber data types to authorized clients and

components

 26

- Maintain session information for connected clients (usually IM

users)

- If necessary, open connections to and validates connections from

other Jabber server, then routes data to them.

- Store information on behalf of components and especially IM users,

including each user’s contact list and some client preferences [45].

Some of the functionalities listed above implement the core requirements dictated by the

XMPP standards [2] [3] and some implement extensions (XEP). Some of the extensions

are transparent, i.e., they are fused into the jabberd14-1.4.x code, and some extensions

require external modules. Jabberd14-1.4.x can support JUD (Jabber User Directory) and

MUC (Multi-User Chat), as external modules.

As the server evolved from version 1.4.x to 1.6.x, functionalities were added to

the core by incorporating new XEP extensions and replacing depreciated extensions.

Below is a list of the added functionalities available in jabberd14 version 1.6.x as

described in [46] that are relevant to the port to MYSEA10:

- Improved compliance to RFC 3920 and RFC 3921 with the

implementation of jadc2s client connection manager,

- Support for privacy lists (XEP-0016),

- Support for Dutch, English, French, German, Hungarian and Italian

and allows for support of additional languages files,

- SASL authentication is possible on client links as well as on inter-

server links thanks to the jadc2s connection manager. Client

authentication can support CRAM-MD5, PLAIN, GSSAPI,

DIGEST-MD5, NTLM, SRP, OTP, KERBEROS_V4. EXTERNAL

is used on inter-server links,

10 Innovations that concern database implementation or other aspects of the server that are not used in

this project are not mentioned here. A full list of the functionality of the jabberd14-1.6.x can be found at
http://jabberd.org/news/.

 27

- Support for Flexible Offline Message Retrieval (XEP-0013),

- Support for XMPP Ping (XEP-0199),

- Support for a full namespace,

- Support for the xml:lang,

- Support for base_dir as a handler to the directory of *.stanza files.

The files can be read and parsed as stanzas. The processed data can

be used as inject messages to the server (scripts)11,

- Passwords are no longer cached in memory by the server,

- Possible to block account names from being registered and enforce

minimum and maximum lengths of the username for new accounts,

- Can block re-registration of a user ID (JID) for a configurable

amount of time (defaults to half a year),

- Possible to migrate from old filespools to newer storage handlers by

reconfiguring the server and then importing the old data (using the I

command line option),

- All components of the server, except the client connection manager,

can be restarted without users’ sessions being dropped. This allows

reconfiguration and software upgrades while the service is running,

- Session manager understands the internal session protocol of the

jabberd2 project. This allows development and use of components

acting as client managers, for both server implementations at the

same time,

- Uses libpopt for command line parsing,

- Detect and ignore stale pid files,

- Service discovery replaces browsing and is generated automatically,

11 There might be a potential security issue here.

 28

- jabber:iq:admin, jabber:iq:filter namespaces and mod_groups

module removed,

- Support for the jabber:iq:agent and jabber:iq:agents is disabled [46].

B. TESTING OVERVIEW

Testing constitutes a fundamental part of the experimentation exercise. The

testing was done on all three platforms using the same clients and the same network

topology as illustrated in Figure 4.

Figure 4. Network Topology of Test Setup

Client 1 and Client 2, represented by the laptops, use the open-source chat client,

Gajim, to connect to the server. Installation instructions for the Gajim client can be found

in Appendix E. The reason why the Gajim client was chosen is because it is

recommended in Chapter III, works with all of the servers that had to be tested and its

web site precisely documents the XEPs that the client supports [43]12. The latter reason is

important because to test the functionality of the server, the client also has to implement

12 The information is on the Wiki at http://trac.gajim.org/wiki/GajimFaq#which-xeps-does-gajim-

support

 29

those functionalities. The jabberd14 server, represented by a desktop in Figure 5, runs

either in a virtual machine (VM) or on the XTS-400 machine.

1. Test Plan

A test plan is required to verify that the servers behave as expected when given

basic tasks to perform. The tests must verify that both the core modules and the MUC and

the JUD modules function according to their respective specifications. Two kinds of tests

were performed; functional tests and exception tests. Functional tests are those that test if

the server correctly performs a task that it claims it can do, like letting a currently

registered user connect to the server with a valid JID. Exception tests are those that test if

the server will perform a task that it should not do, like registering a user with an invalid

JID. This test plan includes five categories from which useful functionality tests were

selected. The five categories are as follows:

A. Account management

B. Presence management

C. Instant Messaging (IM) management

D. Multi-User Chat (MUC) management

E. Service discovery and Jabber User Directory (JUD) management.

The tests are described in Table 4 through Table 8 (one for each category) and are

organized as follows. The first column represents a reference test number, which is used

in Appendix F. The “X” in the second column indicates that the test is considered an

exception test. The “Test Description” column describes the functionality to be tested

and the “Test Objective” column states the goal of the test in relation to the server. Most

of the tests require at least two separate machines with the client installed. On each of

these machines, one valid account needs to be created. Appendix F describes the

assumptions and the environment required for each test. The MUC section could have

 30

included more tests because there are many settings that can be made in the configuration

window of the group chat room, but the focus of these functional tests is security and

privacy.

It is important to note that the jabberd14 servers were tested with their default

configuration settings—the configuration file was not changed except for items required

to function (e.g., name of the server, IP address, patches, flat file storage configuration).

Some of the tests represent compliance tests. These tests involve the fundamental

requirements of the XMPP standard and do not depend on a configuration setting. An

example of compliance testing is the registration with a valid or invalid JID. In the

configuration file, there is no option for the administrator to allow for registration with an

invalid JID. However, some tests depend on configurable options, for example allowing

registration on the legacy port 5223. In order for the server to allow users on the 5223

port, the configuration file can be changed. The criterion for deciding if a test case is an

exception or a functional test depends on the default configuration. In other words, if the

configuration file needs to be changed beyond the standard settings, then that test case is

considered an exception test. Exception tests are expected to fail.

Table 4. Account management

Test

Exception
Test

Test Description Test Objective

A1 Register account with a valid
JID

Ensures that server can register
accounts

A2 X Register account with an invalid
JID

Ensures that server does not
register users with an invalid JID

A3 Register account with a
password

Ensures that server enforces
registering with a password

A4 X Register account without a
password

Ensures that server does not allow
registration without a password

A5 X Connect to server using SSL
(legacy on port 5223)

Ensures that the server does not
connect to a client on legacy port
5223

A6 Connect to server without SSL
(port 5222)

Ensures that server connects to a
client on the reserved port 5222

A7 X Connect to server with SSL
(port 5222)

Ensures that server does not
connect to a client on the reserved

 31

port with SSL
A8 Connect with a password Ensures that server enforces the

use of passwords
A9 X Connect without a password Ensures that server enforces the

use of passwords
A10 Edit personal information Ensures that server performs

resource binding
A11 Add a contact that has a valid

JID
Ensures that server lets users add
contacts and displays them

A12 X Add a contact that has an
invalid JID

Ensures that server checks for the
JID validity before adding contacts

A13 Delete contacts (buddies) from
the contact list

Ensures that server updates the
buddy list

A14 Forbid contacts to see status Ensures that server applies the
right restriction to the right
contacts

A15 Delete an account on client only Ensures that server is not deleting
information when deletion is not
requested

A16 Delete an account on both the
client and the server

Ensures that server is not retaining
information about deleted account

A17 Connect to the server with a
deleted account after test A15 is
performed

Ensures that server does not purge
its records

A18 X Connect to the server with a
deleted account after test A16 is
performed

Ensures that server does not allow
deleted users to connect

A19 X Send server message to all users
connected to the server

Ensures that server does not allow
broadcasting to all registered users

A20 Retrieve other users’ contact
information

Ensures that the server keeps
information on its users

A21 Transfer files between clients Ensures that file transfer
functionality is available

A22 Retrieve communication history
information

Ensures that server is storing
records

A23 Deny a contact from viewing
status for the current session

Ensures that privacy rules
regarding user status can be
enforced by the server for the
current session

A24 Deny a contact from sending a
message for the current session

Ensures that privacy rules
regarding blocking messages from
user can be enforced by the server
for the current session

A25 X Register with an account that
was deleted from both the

Ensures that the server does not
allow a user to re-register with the

 32

server and the client same JID after the account was
deleted on the client as well as on
the server

A26 X Register with an account that
was deleted from the client only

Ensures that the server does not
allow a user to re-register with the
same JID after the account was
deleted on the client only

Table 5. Presence management

Test

Exception
Test

Test Description Test Objective

B1 Change presence to Available Validates that users can become
active after having been in a
different state

B2 Change presence to Free for
Chat, Away, Not Available,
Busy, Invisible and Offline

Validates that presence
information can be changed and is
reflected to users who subscribe to
the presence

B3 Display offline contacts Ensures that server can display
correct presence for contacts

Table 6. Instant Messaging (IM) management

Test

Exception
Test

Test Description Test Objective

C1 Start a chat with someone
registered with the server and is on
the contact list

Ensures that server can retrieve
information from users who
are on the user’s contact list

C2 Start a chat with someone
registered with the server but is not
in the contact list

Ensures that server can retrieve
information from users who do
not subscribe to the user’s
roster

C3 X Start a chat with someone by
mistyping their JID (user ID)

Ensures that server uses
Stringprep

C4 X Start a chat with someone by
mistyping their JID (server name)

Ensures that server checks for
JID validity

C5 Have multiple chat sessions with
different valid contacts

Ensures that the server does not
mix chat sessions in a one to
many paradigm

C6 Have multiple chat sessions with
the same valid contact

Ensures that server does not
mix chat sessions in a one to
one paradigm

C7 Add Emoticons to chat messages Ensures that server can transmit
special characters

 33

Table 7. Multi-User Chat (MUC) management
Test

Exception
Test

Test Description Test Objective

D1 Create a default group chat with a
valid JID

Ensures that server implements
MUC

D2 X Create a default group chat with an
invalid JID

Ensures that server enforces
valid JID

D3 Join a private group chat with
proper credentials (password
required)

Ensures that server can enforce
that the moderator13 can set
rules for joining password-
protected group chat rooms

D4 X Join a private group chat without
membership (member list
enforced)

Ensures that server can enforce
that the moderator can set rules
for joining membership-
protected group chat rooms

D5 X Join a private group chat without
the necessary credentials
(password required)

Ensures that server can enforce
group chat rules set by
moderator

D6 Join a publicly open group chat Ensures that server allows any
user to join public a group chat
room

D7 Configure a group chat room after
it is created (as its creator)

Ensures that the configuration
options of a group chat room
are available to the moderator/
of the room

D8 X Configure a room after it is created
as a normal14 user

Ensures that the configuration
options of group chat rooms are
not available to normal users

D9 Inviting contacts to join private
group chat rooms

Ensures that server can enforce
MUC settings

D10 Communicating in authorized
group chat rooms

Ensures that server keeps the
flow of messages in the proper
order and label their authorship
properly

D11 Ban a user from a group chat room
when having the role of moderator

Ensures that the server manages
configuration options of group
chat rooms properly

D12 X Ban a user from a group chat room
when not having the role of
moderator

Ensures that the server makes
the distinction between the
moderator and normal users

13 The Moderator is the creator of the group chat room
14 A normal user is not the creator of a group chat room

 34

D13 X Joining the group chat room after
been banned

Ensures that banning a user
from a group chat is a
permanent/persistent setting in
the configuration file.

D14 Kick (temporarily remove) a user
from a group chat room when
having the role of moderator

Ensures that the moderator of a
group chat room can kick users

D15 Joining a group chat room after
been kicked

Ensures that kicking is only on
a session basis

Table 8. Service discovery and Jabber User Directory (JUD) management

Test

Exception
test

Test Description Test Objective

E1 List the rooms available and the
number of the participants in each
room

Ensures that server implements
service discovery (XEP-0030)

E2 Access the user directory Ensures that the server
implements JUD

The following sections explain in detail the testing performed on each of the test

platforms.

C. REDHAT 8 PLATFORM

This installation and testing represents the first step towards porting the jabberd14

server to MYSEA. The XTS-400 with STOP 6.3 is closest to the RedHat 8 OS, so this

step is intended to demonstrate that the jabberd14 server can indeed run on RedHat 8.

This experiment installed the software package published by Van Emery in 2003

[47] that integrates the jabberd14-1.4.2, the jud-0.5 and the muc-conference-0.5.2 source

code together as an installable package. The installation was made in a virtual machine

(VM) with a bridge Ethernet connection. This server is configured for a small user

population – about a hundred users— that resides on a private intranet and does not

support dynamic registration.

 35

1. Configuration Issues with the Server

Jabber14-1.4.2 implements all the core functionalities mentioned in Section A of

this chapter in addition to supporting extension 0045 (XEP-0045) and the obsolete

extension 0094 (XEP-0094). These extensions are implemented by two external modules

MUC (Multi-User Chat) version 0.5.2 and JUD (Jabber User Directory) version 0.5. For

this test, this server was configured to disallow client dynamic registration and client

dynamic group chat room creation. These settings were done by the author of the

software package because of the small user base that the server would have to support

and the control that the administrator wanted to keep [47]15. Not having dynamic

registration means that users would contact the server’s administrator to get an account

and have their name as the group chat room administrator in the configuration file in

order to create group chat rooms (see Figure 6).

2. Installation of Jabber14-1.4.2 Server

Because dependency issues were taken care of by the distribution package, it was

a straight forward installation. The jabberd14-1.4.2 server was first installed based on the

instructions in [47]. Appendix B contains the installation instructions and the missing

steps from the original instructions. The distribution also includes scripts to automate the

following administrative tasks:

- Creating user accounts,

- Checking information about user accounts created on the server,

- Generating statistics about the server:

1. the number of connections that are present and encrypted,
or non-encrypted,

2. the number of successful logins for the day,

3. the number of failure logins for the day,

4. the number of connections to other servers,

15 Assumptions section

 36

- Backing up the configuration files, user accounts and other spool
files.

The deletion of user accounts is as simple as deleting the user.xml16 file from the spool

directory of the server.

There is no script to add group chat because the changes need to be made in the

jabberd.xml configuration file itself as follows:
<service id='conference.im.mysea.edu'>
 <load>
 <conference>./mu-conference-0.5.2/src/mu-
conference.so</conference>
 </load>
 <conference xmlns="jabber:config:conference">
 <roomlock/>
 <persistent/>
 <public/>
 <vCard>
 <FN>testroom</FN>
 <FN>Public Chatrooms</FN>
 <DESC>Public Chatrooms at mysea.edu</DESC>
 <URL>http://conference.im.mysea.edu/</URL>
 </vCard>
 <history>40</history>
 <logdir>/var/log/jabberd/</logdir>
 <sadmin>
 <user>phil@im.mysea.edu</user>
 </sadmin>
 <notice>
 <join>has joined</join>
 <leave>has left</leave>
 <rename>is now known as</rename>
 </notice>
 </conference>
 </service>

Figure 5. Configuration settings for group chat rooms

Figure 6 shows that the configuration settings for group chat rooms must be specified

within the <service/> tag. The <roomlock/> tag means that non-administrator users

cannot create group chat rooms and the <persistent/> tag means that the rooms are

permanent (cannot be deleted by users). In Figure 6, only phil has the ability to create

group chat rooms because his JID is configured to be the administrator of the rooms

(between the <user/> tag).

16 The word user in user.xml is replaced by the registered name of the actual user.

<roomlock/> indicates that group chat rooms
cannot be created dynamically.

In this case, the user
called phil is the only
user that has the
privilege to create group
chat room

 37

3. Testing of Jabber14-1.4.2 Server

The server was only informally tested using PSI clients on RedHat 9 VMs and

Windows XP laptops. There are no testing tables for this installation because they were

generated after the decision to move over to Fedora 7 was made.

4. Summary for the RedHat 8 Platform

The installation and testing of the jabberd14-1.4.2 server on the RedHat 8 was a

success. The experience gained was useful for the subsequent experimentations.

D. FEDORA 7 PLATFORM

The installation and testing of jabberd14-1.6.1.1 server (the newest stable version)

on Fedora 7 represents the first step towards porting the newer version of jabberd14

server to MYSEA on the STOP 7 environment. The Fedora 7 binary was installed as a

VM on VMWare and the jabberd14 version 1.6.1.1 source code was downloaded from

the official web site for the jabberd14 Project located at [34].

1. Installation of Jabberd14-1.6.1.1 Server

In addition to downloading and installing the jabberd14-1.6.1.1 server on the

Fedora 7 VM, the MUC module was also installed. The JUD was not installed because of

time constraints. Jabberd14-1.6.1.1 depends on GnuTLS, pthreads (and its development

package) and Libtasn1 (and its development package and tools) [48], [49], [50]. Those

additional components can be installed via standard package manager. Installation

instructions were compiled for this exercise and can be found in Appendix C. One of the

challenges was finding the patch for the configure.ac file. The patch was released via a

JAdmin posting and corrected two problems [51]. The first problem involved a

typographical error in a file name (the original configure.ac file had jabberd14-1.6.1.1

while the correct name of the file is jabberd14-1.6.1.1-p1). The second part of the patch

corrected the configuration file to allow the program to check if libtasn1 version 0.3.0 or

 38

greater was installed17. The default configurations of the server were not modified

beyond the minimum settings for this experiment.

2. Testing of Jabberd14-1.6.1.1 Server

The topology of the test network matches Figure 5 and the results of the

functional and exception tests are in Table 9 through Table 12 below. In these tables, the

first four columns are identical to the first four columns in Table 4 through Table 8 in

Section B of this chapter. The test procedures for these tests are in Appendix F. An “X”

indicates that the particular test is an exception test and the expected result is “Fail.” The

last four columns represent the expected and observed test results. The word “Pass”

indicates that the action that is described in the “Test Description” was successful. The

word “Fail” indicates that the action described in the “Test Description” failed to happen.

“NC” stands for non configurable. The “NC” test was not conducted. The analysis of the

test results follows the tables. Because this server did not have the JUD module installed,

the Service discovery and Jabber User Directory (JUD) management tests were not

performed.

17 Code dependency is discussed in Chapter VI.

 39

Table 9. Account management on the Fedora 7 platform
Test

Exception
Test

Test Description Test Objective Expected
results
for user1

Expected
results
for user2

Actual
result
for
user1

Actual
result
for
user2

A1 Register account with a valid JID Ensures that server can register
accounts

Pass Pass Pass Pass

A2 X Register account with an invalid
JID

Ensures that server does not
register users with invalid JID

Fail Fail Fail Fail

A3 Register account with a password Ensures that server enforces
registering with a password

Pass Pass Pass Pass

A4 X Register account without a
password

Ensures that server enforces
registering with a password

Fail Fail Fail Fail

A5 X Connect to server using SSL
(legacy on port 5223)

Ensures that the server does not
connect to a client on the legacy
port 5223

Fail Fail Fail Fail

A6 Connect to server without SSL
(port 5222)

Ensures that server connects to a
client on the reserved port 5222

Pass Pass Pass Pass

A7 X Connect to server with SSL (port
5222)

Ensures that server does not
connect to a client on the
reserved port with SSL

NC NC NC NC

A8 Connect with a password Ensures that server enforces the
use of passwords

Pass Pass Pass Pass

A9 X Connect without a password Ensures that server enforces the
use of passwords

Fail Fail Fail Fail

A10 Edit personal information Ensures that server performs
resource binding

Pass Pass Pass Pass

A11 Add a contact that has a valid JID Ensures that server lets users
add contacts and displays them

Pass Pass Pass Pass

A12 X Add a contact that has an invalid Ensures that server checks for Fail Fail Fail Fail

 40

JID the JID validity before adding
contacts

A13 Delete contacts (buddies) from the
contact list

Ensures that server updates the
buddy list

Pass Pass Pass Pass

A14 Forbid contacts to see status Ensures that server applies the
right restriction to the right
contacts

Pass Pass Pass Pass

A15 Delete an account just on client
only

Ensures that server is not
deleting information when
deletion is not requested

Pass Pass Pass

Pass

A16 Delete an account on both the
client and the server

Ensures that server is not
retaining information about
deleted account

Pass Pass Pass Pass

A17 Connect to the server with a
deleted account after test A15 is
performed

Ensures that server does not
purge its records

Pass Pass Pass Pass

A18 X Connect to the server with a
deleted account after test A16 is
performed

Ensure that server does not
allow deleted users to connect

Fail Fail Fail Fail

A19 X Send server message to all users
connected to the server)

Ensures that server does not
allow broadcasting to all
registered users

Fail Fail Fail Fail

A20 Retrieve other users’ contact
information

Ensures that the server keeps
information on its users

Pass Pass Pass Pass

A21 Transfer files between clients Ensures that file transfer
functionality is available

Pass Pass Pass Pass

A22 Retrieve communication history
information

Ensures that server is storing
records

Pass Pass Pass Pass

A23 Deny a contact from viewing Ensures that privacy rules Pass Pass Pass Pass

 41

status for the current session regarding user status can be
enforced by the server for the
current session

A24 Deny a contact from sending a
message for the current session

Ensures that privacy rules
regarding blocking messages
from user can be enforced by the
server for the current session

Pass Pass Pass Pass

A25 X Register with an account that was
deleted from both the server and
the client

Ensures that the server does not
allow a user to re-register with
the same JID after the account
was deleted on the client as well
as on the server

Pass Pass Fail Fail

A26 X Register with an account that was
deleted from the client only

Ensures that the server does not
allow a user to re-register with
the same JID after the account
was deleted on the client only

Fail Fail Fail Fail

Table 10. Presence management on the Fedora 7 platform

Test

Exception
Test

Test Description Test Objective Expected
results
for Test
user 1

Expected
results
for Test
user 2

Actual
result
for
user1

Actual
result
for
user2

B1 Change presence to
Available

Validates that users can become active
after having been a different state

Pass Pass Pass Pass

B2 Change presence to Free for
Chat, Away, Not Available,
Busy, Invisible and Offline

Validates that presence information
can be changed and is reflected to
users who subscribe to the presence

Pass Pass Pass Pass

B3 Display offline contacts Ensures that server can display correct
presence for contacts

Pass Pass Pass Pass

 42

Table 11. Instant Messaging (IM) management on the Fedora 7 platform
Test

Exception
Test

Test Description Test Objective Expected
results
for Test
user 1

Expected
results
for Test
user 2

Actual
result
for
user1

Actual
result
for
user2

C1 Start a chat with someone
registered with the server and is on
the contact list

Ensures that server can retrieve
information from users who are
on the user’s contact list

Pass Pass Pass Pass

C2 Start a chat with someone
registered with the server but is
not in the contact list

Ensures that server can retrieve
information from users who do
not subscribe to the other user’s
roster

Pass Pass Pass Pass

C3 X Start a chat with someone by
mistyping their JID (user ID)

Ensures that server uses
Stringprep

Fail Fail Fail Fail

C4 X Start a chat with someone by
mistyping their JID (server name)

Ensures that server checks for
JID validity for contacts

Fail Fail Fail Fail

C5 Have multiple chat sessions with
different valid contacts

Ensures that the server does not
mix chat sessions in a one to
many paradigm

Pass Pass Pass Pass

C6 Have multiple chat sessions with
the same valid contact

Ensures that server does not mix
chat sessions in a one to one
paradigm

Pass Pass Fail Fail

C7 Add Emoticons to chat messages Ensures that server can transmit
special character

Pass Pass Pass Pass

 43

Table 12. Multi-User Chat (MUC) management on the Fedora 7 platform
Test

Exception
Test

Test Description Test Objective Expected
results
for Test
user 1

Expected
results
for Test
user 2

Actual
result
for
user1

Actual
result
for
user2

D1 Create a default group chat
with a valid JID

Ensures that server implements MUC Pass Pass Pass Pass

D2 X Create a default group chat
with an invalid JID

Ensures that server enforces valid JID Fail Fail Fail Fail

D3 Join a private group chat
with proper credentials
(password required)

Ensures that server can enforce that the
moderator can set rules for joining
password-protected group chat rooms

Pass Pass Pass Pass

D4 X Join a private group chat
without membership
(member list enforced)

Ensures that server can enforce that the
moderator can set rules for joining
membership-protected group chat
rooms

Fail Fail Fail Fail

D5 X Join a private group chat
without necessary
credentials (password
required)

Ensures that server can enforce group
chat rules set by moderator

Fail Fail Fail Fail

D6 Join a publicly open group
chat

Ensures that server allows any user to
join public a group chat room

Pass Pass Pass Pass

D7 Configure a group chat room
after it is created (as its
creator)

Ensures that the configuration options
of a group chat room are available to
the moderator of the room

Pass Pass Pass Pass

D8 X Configure a room after it is
created as a normal user

Ensures that the configuration options
of group chat room are not available to
normal users

Fail Fail Fail Fail

D9 Inviting contact to join
private group chat rooms

Ensures that server can enforce MUC
settings

Pass Pass Pass Pass

 44

D10 Communicating in
authorized group chat rooms

Ensures that server keeps the flow of
messages in the proper order and label
their authorship properly

Pass Pass Pass Pass

D11 Ban a user from a group chat
room when having the role
of moderator

Ensures that the server manages
configuration options of group chat
rooms properly

Pass Pass Pass Pass

D12 X Ban a user from a group chat
room when not having the
role of moderator

Ensures that the server makes the
distinction between moderator and
normal users

Fail Fail Fail Fail

D13 X Joining the group chat room
after been banned

Ensures that banning a user from a
group chat is a permanent/persistent
setting in the configuration file

Fail Fail Fail Fail

D14 Kick (temporarily remove) a
user from a group chat room
when having the role of
moderator

Ensures that the moderator of a group
chat room can kick users

Pass Pass Pass Pass

D15 Joining a group chat room
after been kicked

Ensures that kicking is only on a
session basis

Pass Pass Pass Pass

 45

3. Test Analysis

A7 is a test that could not be configured on the client because the server is the one

to enforce the use of SSL. The observed result of test A18 was not as expected. The

server did not alert the user that the connection failed because the account had been

deleted; instead, the icon in the client appeared to be connecting, but hung. This behavior

does not mean that it is a server issue; it could also be a bug in the client software (the

software might not be able to interpret the error messages that the server is sending).

Sending raw XML stanzas via a Telnet connection directly to the server would most

likely the cause of the problem. In test A25, it was expected that the server would not

allow a deleted user to re-register immediately with the same JID because the

configuration file has a regtimeout18 value of 157680000 seconds. As a consequence, a

“conflict in account creation” error message was received. For test C6, the observed

result is different than the expected result. Here, it was predicted that one user could have

multiple IM sessions with the same contact, but in reality the client can detect that an IM

session is already in progress and does not open another window. The MUC tests were all

successful. Behaving as predicted, they provide an extra layer of privacy and protection

for its users.

4. Summary for the Fedora 7 Experiment

The installation and testing of the jabberd14-1.6.1.1 server on Fedora 7 were

successful. The next step was to install the same jabberd14 software on STOP 7 and

repeat the tests.

18 A regtimeout value of 0 means that users can re-register with the same JID immediately after the

account has been deleted and a regtimeout value of -1 means that deleted accounts are blocked from re-
registering with that same JID forever.

 46

E. XTS400 STOP 7 PLATFORM

This installation and testing exercise represents the final jabberd14 porting

experiment. Because of the success of the experiment of the server on the Fedora 7 platform,

expectations were high that it would work on the STOP 7.

1. Installation of Jabberd14-1.6.0 Server

The original plan was to use the same jabberd14-1.6.1.1 software that was used on

Fedora 7 on STOP 7. However, this plan was changed after it was discovered that the use of

the GnuTLS package cannot be disabled in version 1.6.1.1. GnuTLS is free software that

implements the TLS protocol, which is described in the RFC 4346. It provides the API that

can be used by applications to use TLS to secure the transport layer in a network [48].

GnuTLS has dependencies that are not available in STOP 7, and due to time constraint,

jabberd14 version 1.6.0 was used instead of version 1.6.1.1. Version 1.6.0 does not require

GnuTLS, as it still uses OpenSSL19 as the mean to secure the transport layer and the

functionality of the jabberd14-1.6.0 server is identical to the 1.6.1.120 [46].

A number of challenges were encountered during the server installation on STOP 7.

The main ones for this experiment were:

• MAC policy. The default security level for the administrator is System Low

(syslo) and the default levels of the CD drive and Ethernet device are System

High (syshi). To streamline the testing process, the security level used for the

test sessions was also syslo. Hence, the level of the Ethernet device must be

set to syslo. The security level of the CD drive was temporarily set to syslo to

read in the downloaded software and reset back to syshi as required by the

MYSEA convention. Additional steps were also required to properly set the

security level of the administrator so that the administrator could change the

devices’ security levels. These steps are not complicated, but need to be done

in the proper order and not overlooked.

19 With the prior versions, there was a toggle to configure the server with or without openssl
20 According to the 1.6.1.1 release notes, there were no new features introduced in 1.6.1.1 from the

1.6.0 server.

 47

• Dependencies. STOP 7 did not provide pkg-config, expat, libidn or glib

packages21 or a package manager such as yum to install packages. The

source code for these packages was installed separately before the

jabberd14-1.6.0 server could be installed. A dependency chart is

documented in Chapter V.

• No GUIs. The only way to have multiple command prompts on different

screens is to use the ALT-F keys combination and login multiple times.

Having a minimum of two screens is necessary because the MUC module

needs to be launched separately than the server, but needs to run

concurrently to the server. In addition to using multiple screens to start

individual programs, having multiple prompts is very practical when

looking at logs and monitoring the service concurrently.

In addition to these challenges, the wget command did not work for downloading

the source code on the jabberd14-1.6.0 web site22. In order to install the server source

code along with its dependencies and the source code for the MUC and JUC modules and

their dependencies, two methods were used. The first method used CDs that were made

on a Fedora 8 machine and the second method used the wget command to retrieve files

from an FTP server on a networked Fedora 8 machine.

There is an additional challenge concerning the JUD module. This module’s make

file assumes the existence of a file called platform-settings. To work around that

dependency, platform-settings file used in the RedHat 8 environment was brought over to

the STOP system. This allowed the JUD module to compile successfully.

Appendix D contains the installation guide to set up jabberd14-1.6.0 server on an

XTS-400 with a STOP 7 beta operating system.

21 An explanation of the purpose of those packages is in Chapter V
22 Even though the name of the site could be resolved into an IP address, the STOP 7 was not able to

follow the path on the server in order to download the software.

 48

2. Testing Jabberd14-1.6.0 Server

The same test network topology depicted in Figure 5 was used. The tests and test

results are summarized in Table 13 through Table 17. The tests conducted in Table 9

through Table 12 are the same tests that were performed on the Fedora 7 platform, with

the addition of the Service discovery and Jabber User Directory (JUD) management tests

(Table 17). The same Gajim client was used and therefore, the same procedures described

in Appendix F were used. Only the PSI client from [47] was used in the case of the E2

test (explanation provided in the test analysis after the tables).

 49

Table 13. Account management on the STOP 7 platform
Test

Exception
Test

Test Description Test Objective Expected
results
for user1

Expected
results
for user2

Actual
result
for
user1

Actual
result
for
user2

A1 Register account with a valid JID Ensures that server can register
accounts

Pass Pass Pass Pass

A2 X Register account with an invalid
JID

Ensures that server does not
register users with invalid JID

Fail Fail Fail Fail

A3 Register account with a password Ensures that server enforces
registering with a password

Pass Pass Pass Pass

A4 X Register account without a
password

Ensures that server enforces
registering with a password

Fail Fail Fail Fail

A5 X Connect to server using SSL
(legacy on port 5223)

Ensures that the server does not
connect to a client on legacy
port 5223

Fail Fail Fail Fail

A6 Connect to server without SSL
(port 5222)

Ensures that server connects to a
client on the reserved port 5222

Pass Pass Pass Pass

A7 X Connect to server with SSL (port
5222)

Ensures that server does not
connect to a client on the
reserved port with SSL

NC NC NC NC

A8 Connect with a password Ensures that server enforces the
use of passwords

Pass Pass Pass Pass

A9 X Connect without a password Ensures that server enforces the
use of passwords

Fail Fail Fail Fail

A10 Edit personal information Ensures that server performs
resource binding

Pass Pass Pass Pass

A11 Add a contact that has a valid JID Ensures that server lets users
add contacts and displays them

Pass Pass Pass Pass

A12 X Add a contact that has an invalid Ensures that server checks for Fail Fail Fail Fail

 50

JID the JID validity before adding
contacts

A13 Delete contacts (buddies) from the
contact list

Ensures that server updates the
buddy list

Pass Pass Pass Pass

A14 Forbid contacts to see status Ensures that server applies the
right restriction to the right
contacts

Pass Pass Pass Pass

A15 Delete an account just from on the
client

Ensures that server is not
deleting information when
deletion is not requested

Pass Pass Pass

Pass

A16 Delete an account on both the
client and the server

Ensures that server is not
retaining information about
deleted account

Pass Pass Pass Pass

A17 Connect to the server with a
deleted account after test A15 is
performed

Ensures that server does not
purge its records

Pass Pass Pass Pass

A18 X Connect to the server with a
deleted account after test A16 is
performed

Ensures that server does not
allow deleted users to connect

Fail Fail Fail Fail

A19 X Send server message to all users
connected to the server

Ensures that server does not
allow broadcasting to all
registered users

Fail Fail Fail Fail

A20 Retrieve other users’ contact
information

Ensures that the server keeps
information on its users

Pass Pass Pass Pass

A21 Transfer files between clients Ensures that file transfer
functionality is available

Pass Pass Pass Pass

A22 Retrieve communication history
information

Ensures that server is storing
records

Pass Pass Pass Pass

A23 Deny a contact from viewing Ensures that privacy rules Pass Pass Fail Fail

 51

status regarding user status can be
enforced by the server

A24 Deny a contact from sending a
message

Ensures that privacy rules
regarding blocking messages
from user can be enforced by the
server for the current session

Pass Pass Fail Fail

A25 X Register with an account that was
deleted from both the server and
the client

Ensures that the server does not
allow a user to re-register with
the same JID after the account
was deleted on the client as well
as on the server

Pass Pass Fail Fail

A26 X Register with an account that was
deleted from the client only

Ensures that the server does not
allow a user to re-register with
the same JID after the account
was deleted on the client only

Fail Fail Fail Fail

 52

Table 14. Presence management on the STOP 7 platform
Test

Exception
Test

Test Description Test Objective Expected
results
for Test
user 1

Expected
results
for Test
user 2

Actual
result
for
user1

Actual
result
for
user2

B1 Change presence to
Available

Validates that users can become active
after having been in a different state

Pass Pass Pass Pass

B2 Change presence to Free for
Chat, Away, Not Available,
Busy, Invisible, and Offline

Validates that presence information can
be changed and is reflected to users
who subscribe to the presence

Pass Pass Pass Pass

B3 Display offline contacts Ensures that server can display correct
presence for contacts

Pass Pass Pass Pass

 53

Table 15. Instant Messaging (IM) management on the STOP 7 platform

Test

Exception
Test

Test Description Test Objective Expected
results
for Test
user 1

Expected
results
for Test
user 2

Actual
result
for
user1

Actual
result
for
user2

C1 Start a chat with someone
registered with the server and is on
the contact list

Ensures that server can retrieve
information from users who are
on the user’s contact list

Pass Pass Pass Pass

C2 Start a chat with someone
registered with the server but is
not in the contact list

Ensures that server can retrieve
information from users who do
not subscribe to the user’s roster

Pass Pass Pass Pass

C3 X Start a chat with someone by
mistyping their JID (user ID)

Ensures that server uses
Stringprep

Fail Fail Fail Fail

C4 X Start a chat with someone by
mistyping their JID (server name)

Ensures that server checks for
JID validity for contacts

Fail Fail Fail Fail

C5 Have multiple chat sessions with
different valid contacts

Ensures that the server does not
mix chat sessions in a one to
many paradigm

Pass Pass Pass Pass

C6 Have multiple chat sessions with
the same valid contact

Ensures that server does not mix
chat sessions in a one to one
paradigm

Pass Pass Fail Fail

C7 Add Emoticons to chat messages Ensures that server can transmit
special character

Pass Pass Pass Pass

 54

Table 16. Multi-User Chat (MUC) management on the STOP 7 platform

Test

Exception
Test

Test Description Test Objective Expected
results
for Test
user 1

Expected
results
for Test
user 2

Actual
result
for
user1

Actual
result
for
user2

D1 Create a default group chat
with a valid JID

Ensures that server implements MUC Pass Pass Pass Pass

D2 X Create a default group chat
with an invalid JID

Ensures that server enforces valid JID Fail Fail Fail Fail

D3 Join a private group chat
with proper credentials
(password required)

Ensures that server can enforce that the
moderator can set password protected
group chat rooms

Pass Pass Pass Pass

D4 X Join a private group chat
without membership
(member list enforced)

Ensures that server can enforce that the
moderator can set membership
protected group chat rooms

Fail Fail Fail Fail

D5 X Join a private group chat
without the necessary
credentials (password
required)

Ensures that server can enforce group
chat rules set by moderator

Fail Fail Fail Fail

D6 Join a publicly open group
chat

Ensures that server allows any user to
join public a group chat room

Pass Pass Pass Pass

D7 Configure a room after it is
created (as its creator)

Ensures that the configuration options
of a group chat room are available to
the moderator of the room

Pass Pass Pass Pass

D8 X Configure a group chat room
after it is created as a normal
user

Ensures that the configuration options
of group chat room are not available to
normal users

Fail Fail Fail Fail

D9 Inviting contacts to join Ensures that server can enforce MUC Pass Pass Pass Pass

 55

private group chat rooms settings
D10 Communicating in

authorized group chat rooms
Ensures that server keeps the flow of
messages in the proper order and label
their authorship properly

Pass Pass Pass Pass

D11 Ban a user from a group chat
room when having the role
of moderator

Ensures that the server manages
configuration options of group chat
rooms properly

Pass Pass Pass Pass

D12 X Ban a user from a group chat
room when not having the
role of moderator

Ensures that the server makes the
distinction between moderator and
normal users

Fail Fail Fail Fail

D13 X Joining the group chat room
after been banned

Ensures that banning a user from a
group chat is a permanent/persistent
setting in the configuration file

Fail Fail Fail Fail

D14 Kick (temporarily remove) a
user from a group chat room
when having the role of
moderator

Ensures that the moderator of a group
chat room can kick users

Pass Pass Pass Pass

D15 Joining a group chat room
after been kicked

Ensures that kicking is only on a
session basis

Pass Pass Pass Pass

 56

Table 17. Service discovery and Jabber User Directory (JUD) management on the STOP 7 platform

Test

Exception
test

Test Description Test Objective Expected
results
for Test
user 1

Expected
results
for Test
user 2

Actual
result
for
user1

Actual
result
for
user2

E1 List the rooms available
and the number of the
participants in each room

Ensures that server implements service
discovery (XEP-0030)

Pass Pass Pass Pass

E2 Access the user directory Ensures that the server implements JUD Pass Pass Pass Pass

 57

3. Test Analysis

The results that were obtained from the tests in Table 13 through 17 are the same

as from Table 9 through 12 (Fedora 7). Although, the Service discovery and Jabber User

Directory (JUD) management tests were not performed on the Fedora platform, they were

performed on the STOP 7 platform. As shown in Table 17, the service discovery

mechanism adequately retrieved the names of the public23 group chat rooms, the number

of participants presently in each room, the description of the rooms and their respective

group chat room ID24 (i.e., public@conference.thesis.nps.edu). However, the feature to

search for other users (JUD) did not work with the Gajim client. As the mouse was

moved over the JUD features, a text box would display a message indicating that either

the service was not implemented on the server or it was a legacy service (implying that is

was no longer supported). In order to confirm that the server was indeed supporting the

JUD module, another client (PSI from [47]) was used. This test successfully confirmed

that the jabberd14-1.6.0 server supports JUD.

4. Summary of the XTS-400 Experiment

In this sub-section, the challenges of installing the jabberd14-1.6.0 on STOP 7

beta were discussed. A summary of the test cases was also included. The success of

installing and testing jabberd14-1.6.0 on STOP 7 beta implies that the goal of porting

jabberd14-1.6.0 server to a MLS environment can be undertaken.

F. SUMMARY

It is encouraging to have successfully installed and tested the jabberd14-1.6.0

server, its dependencies and its external modules (MUC and JUD) on the STOP 7

because it indicates that this study can continue. In the next chapter, Chapter V, code

review and technical and security issues that might affect the porting of chat to the MLS

environment of MYSEA are discussed.

23 The server did not display the name of group chat room protected by membership, a password or

both.
24 ID for a group chat room has no correlation with a JID for a user.

 58

 THIS PAGE INTENTIONALLY LEFT BLANK

 59

V. TECHNICAL AND SECURITY ISSUES

This chapter describes the code structure, technical and security issues based on

the installation and testing of the jabberd14-1.6.0 server on the STOP OS 7 described in

the previous chapter. There are three major sections. The first section gives an overview

of the structure of the code of the jabberd14-1.6.0 server and the code dependencies that

will be needed to support a subsequent module-by-module code review. The second

section discusses the known technical issues for porting the server code to the STOP OS

7 environment and the last section discusses security issues.

A. CODE SURVEY

This section consists of three sub-sections. The first sub-section describes the

external library dependencies that are needed in order to install the server and the external

extensions that were tested (MUC and JUD). The second sub-section shows the XEP’s

dependencies between each other and in relation to the core modules. Finally, the last

sub-section describes the structure of the code of the server.

1. External Library Dependencies

Unmodified STOP 7 supports a number of libraries. However, not all of the

libraries that were needed to successfully install and run jabberd14-1.6.0 server were

present on the STOP 7. For this reason, four additional packages had to be installed.

Below is the list of external libraries that jabberd14-1.6.0 along with the MUC and the

JUD modules require:

- expat. “Expat is a library, written in C, for parsing XML documents [52].”

This is an open-source project that underlies the XML parser for the Mozilla

project, perl’s XML::Parser and other open-source XML parsers. This is a

“very fast parser with high standard for reliability, robustness and correctness

[52].” This open source parser is available on sourceforge [53]. This project is

 60

mature, active and well supported [54]. The version used for this thesis is

2.0.1. It requires autoconf-2.5225, and an ‘m4’ macro package. STOP 7

implements autoconf and m4.

- libidn. This GNU library is an implementation of the stringprep26 used for

internationalized domain names. It is written in C [50]. It is especially important

because it offers profiles for Kerberos 5, Nameprep, SASL and XMPP. Libidn is

developed for the GNU/Linux system, but runs on over 20 other platforms,

including Windows [50]. libidn is a well documented and well maintained open

source GNU library. The version used for this thesis is 0.6.8 and the README-

alpha file in the package claims that “the program is unsecured and should not be

used in a production environment [55].” Libidn depends on libtool and pkg-

config. STOP 7 implements libtool27 but not pkg-config.

- pkg-config. This helper tool supports inserting the correct compiler options on

the command line when compiling an application or library [56]. The version that

was installed for this thesis is 0.23. This library has no dependencies that are not

already available on STOP OS 7.

- glib. This library forms the basis for projects such as GTK+28 and GNOME29. It

provides data structure for C, portability wrappers, and interfaces for such

runtime functionality as event loops, threads dynamic loading and object systems

[57]. The version of glib used for this thesis is 2.0.7. Glib requires pkg-config and

GNUmake. GNUmake is part of STOP OS 7.

25 autoconf is a package for creating Bourne shell scripts to configure source code packages using

templates [58].
26 stringprep is a framework for preparing Unicode text strings in order to increase the likelihood that

string input and string comparison work in ways that make sense for typical users throughout the world.
The stringprep protocol is useful for protocol identifier values, company and personal names,
internationalized domain names, and other text strings [26]. The stringprep standard is documented in RFC
3454.

27 Libtool is a generic library support script [59].
28 GTK+ is a toolkit for creating graphical user interfaces. It puts together glib, pango, cairo and ATK

[60].
29 GNOME is a project similar to GTK+. More details are at [61].

 61

- platform-settings. This is not a library, but a file that contains a bash shell

script that the server generates to set platform-specific build environment

variables when the source code is compiled [62]. However, the jabberd14-

1.6.0 source code that was installed on STOP OS 7 did not generate that file.

As a shortcut to installing the module, the platform-settings file generated by

the jabberd1.4.2 on RedHat 8 was copied to the STOP OS 7 environment.

This worked because the same JUD code was used on both platforms.

Figure 6 shows the dependency tree for the jabberd14-1.6.0 as configured in the previous

chapter including the external MUC and JUD modules.

Figure 6. Library dependencies

 62

A number of packages must be installed in a specific order.

a. For jabberd14, the following build ordering is required:

1. pkg-config-0.23. This package does not have dependencies that are not already

available on the STOP 7 operating system

2. libidn-0.6.8. This package depends on pkg-config.

3. expat-2.0.1. This package does not have dependencies that are not already

available on the STOP 7 operating system

b. For the MUC module, the following build ordering is required:

1. pkg-config-0.23.

2. libidn-0.6.8.

3. expat-2.0.1.

4. glib-2.0.7. This package depends on pkg-config.

5. jabberd14-1.6.0. This package depends on expat and libidn

c. For the JUD module, the following build ordering is required:

1. pkg-config-0.23.

2. libidn-0.6.8.

3. expat-2.0.1.

4. platform-settings bash file in the jabberd14-1.6.0 directory

5. jabberd14-1.6.0

2. XEP’s Dependencies

In addition to the basic functionalities required by RFC 3920 and RFC 3921,

Jabberd14-1.6.0 server supports fifteen XEPs (see Chapter III for details). The main

purpose of the XEPs is to extend the XMPP-core and XMPP-IM capabilities. For this

analysis, the XEPs are divides into two groups: directly-supported and indirectly-

supported. Table 18 and Table 19 summarize these two groups, respectively.

 63

XEP number XEP Name Status

XEP-0012 Last activity Draft

XEP-0013 Flexible offline message retrieval Draft

XEP-0016 Privacy Lists Draft

XEP-0030 Service Discovery Final

XEP-0033 Extended stanza addressing Draft

XEP-0045 Multi-User Chat Draft

XEP-0048 Bookmarks Draft

XEP-0049 Private XML storage Active

XEP-0050 Ad-Hoc commands Draft

XEP-0054 vcard-temp Active

XEP-0092 Software version Draft

XEP-0114 Jabber component protocol Active

XEP-0145 Annotations Active

XEP-0153 vCard-based avatars Active

XEP-0199 XMPP Ping Draft

Table 18. Directly-supported XEP

 64

XEP number XEP Name Status

XEP-0004 Data forms Final

XEP-0060 Publish-Subscribe Draft

XEP-0068 Field standardization for data forms Active

XEP-0082 XMPP data and time profiles Active

XEP-0115 Entity capabilities Draft

XEP-0128 Service discovery extensions Active

XEP-0131 Stanza headers and Internet metadata

(SHIM)

Draft

XEP-0223 Best practices for persistent storage of

public data via Publish-subscribe

Proposed

Table 19. Indirectly-supported XEPs

All of the XEPs that jabberd14-1.6.0 supports require the server to meet the

XMPP-core standard [2]. Furthermore, some XEPs also require the server to support

XMPP-IM [3], other XEPs or external standards. For example, XEP-0223, an indirectly-

supported XEP, depends on XEP-0115, XEP-0060 and XEP-0030.

Figure 7 shows a dependency tree for the directly and indirectly supported XEPs.

At the root is the XMPP-core and XMPP-IM. The arrows mean “supports” or “is required

for.” The requirements for core functionality are met either directly or indirectly via other

dependencies.

 65

Figure 7. XEPs dependency tree

 66

Clearly some extensions have more dependencies than others. However, half of the XEPs

that the jabberd14-1.6.0 server supports do not have any dependencies besides the core. It

is interesting to note that XEP-0082 is the only XEP that requires ISO 8601 [63] and

XMPP Schema Part 2, both of which are not XEPs.

3. Structure of the Code of the Jabberd14-1.6.0 Server

The jabberd14-1.6.0 server is composed of seven major modules. Below is a

description of the functionality of each module, including the sql module, even though

this project uses flat file storage. The modules are arranged alphabetically. It is important

to note that modules are hierarchically organized and some modules encapsulate other

modules. More information can be found at [64].

- dialback. This module manages the server to server connections. It includes

four different files. The dialback.c is responsible for dispatching the work to

either dialback_in.c or dialback_out.c. These modules handle the incoming or

outgoing connections between servers. The directory also contains a header

file for module interface declaration. [65].

- dnsrv. This module implements the Domain Name Server (DNS) resolver.

This mechanism does not read the /etc/hosts file, but instead makes DNS

queries. This module interacts with the server-to-server connection managers

as it gets all stanzas that are not intended to be delivered locally. This module

consists of only three source code files, including a header file [66].

- jabberd. This module contains the executable base (binary) of the server

which implements the XML router. A router normally deals with packets;

however, an XML router deals with stanzas. The file jabberd.c contains the

entry point and control functions. In addition to XML routing, this module

contains the C code that manages threads, a heartbeat mechanism, a logging

service, a configuration file handler, a network sockets handler, an interface to

the database and an access control list verifier [67]. The jabberd module also

contains two other modules (base and lib). The base module is made out of C

 67

files to take care of base handlers, which connects targets to sources to the

XML router [68]. The lib module contains the library functions used by the

entire server [69].

- jsm. “The jabber session manager is the component of jabberd14 that handles

the visible part of transporting and storing messages, managing presence and

presence subscriptions [70].” In the jsm directory, there is a directory called

modules on which the jsm functionality rests. This module consists of two

parts: the base component and a collection of external modules, each

implements a specific JSM functionality, e.g., presence and in-band

registration.

- pthsock. This module manages the client-to-server connections. “The task of

this component is to accept incoming TCP/IP requests from jabber clients, and

to forward the received stanzas to the session manager of the user [71].”

- xdb_file. This module implements the storage of persistent data in XML files

[72].

- xdb_sql. This module handles the storage of persistent data using a SQL

database [73].

Figure 8 illustrates the different modules, including their sub-modules as an attempt to

graphically summarize the description above.

 68

Figure 8. jabberd14-1.6.0 module composition

 69

a. Entry Point of Jabberd14-1.6.0 Server

The main entry point of the Jabber server is in the jabberd.c file. Since the

service can be configured with special options (like IPv6) and can be invoked with

different flags on the command line, main() checks for those configurations and settings

and initializes the server accordingly. After checking parameters and initializing the

signal handlers, main() calls the following functions30 in the order listed. This list was

made with the help of the jabberd.org documentation [64]:

pth_init(). This function is from the gnupthread library; external to the

jabberd code. It initializes the Pth library.

heartbeat_birth(). This function calls the new function _new_beat(),

which allocates memory for a new “heartbeat ring” structure, initializes the “heartbeat

ring” and starts a new thread for the heartbeat mechanism by calling pth_spawn().

register_beat(). This function registers a function to receive heartbeats

i.e., to be called regularly. This includes setting up a record that defines the heartbeat for

the jabberd signal handler and inserting the new record in the global “heartbeat ring.”

mio_init(). The MIO module manages the input and output to the service,

hiding the detail of sockets from the components of jabberd. This function must be called

before the other functions in the MIO module can be used. This function creates the

variables that will be needed for communication. It checks to determine if TLS/SSL is to

be used and initializes those services accordingly. It then allocates and initializes module

databases, sets up the “karma” heartbeat, and creates and starts the MIO thread. Karma is

“an input/output rate limiting system that the Jabber team came up with to prevent

bandwidth hogging [74].”

base_init(). This function fills in part the run-time memory pool data

structure to contain the base configuration handlers. It does this by calling: base_accept(),

30 Some of those functions might be called with parameters, but for clarity purposes, the parameters

are not included here.

 70

base_connec(), base_dir(), base_file(), base_format(), base_load(), base_null(),

base_stderr(), base_syslog(), base_to(), base_unsubscribe(), base_importspool().

deliver_init(). This function initializes the XML stanza delivery system. It

registers additional configuration handlers that are specific to the delivery mechanisms.

After initialization, main() enters a loop, from where it calls:

pth_ctrl(),and pth_sleep(60) by reading the pth schedulers’s average load every 60

seconds. Both the pth_ctrl and pth_sleep are from the gnupth library. This loop keeps the

server alive.

The above list illustrates the initialization and run-time control logic of

jabberd. An exhaustive review of the code is outside the scope of this thesis.

b. Exploring XEPs

In Chapter III, we listed the different XEPs that jabberd14 server

advertises to support [34]. After assessing the code in more detail, it appears that not all

of the extensions that were claimed to be supported actually are supported. Furthermore,

there are code modules for XEPs that are not listed at [34]. Individual XEPs are

implemented as sub-modules of the jsm (Jabber session manager) module. Figure 9

shows the structure of the modules directory, inside the jsm directory, and indicates

which XEP(s) jabberd14 implements.

 71

Figure 9. The modules Directory

 72

Table 20 shows the XEPs that are implemented in the modules directory.

Note that the XEP-0045 (MUC) is not mentioned in the table since it is an external

module and must be installed separately. The JUD functionality is not present in this

table either because it is an undocumented31 module.

XEP number

implemented

Description Status Claimed to be

supported

XEP-0011 Jabber browsing Deprecated No

XEP-0012 Last Activity Draft Yes

XEP-0013 Flexible Offline Message Retrieval Draft Yes

XEP-0016 Privacy Lists Draft Yes

XEP-0022 Message Events Deprecated No

XEP-0023 Message Expiration Deprecated No

XEP-0030 Service Discovery Final Yes

XEP-0049 Private XML Storage Active Yes

XEP-0054 vcard-temp Active Yes

XEP-0077 In-Band Registration Final No

XEP-0078 Non-SASL Authentication Deprecated No

XEP-0090 Entity Time Deprecated No

XEP-0092 Software Version Draft Yes

XEP-0094 Agent Information Obsolete No

XEP-0199 XMPP Ping Draft Yes

Table 20. XEPs implemented in the modules directory

31 There is no XEP standard that was reviewed and accepted by the XSF for this functionality.

 73

B. TECHNICAL ISSUES

The most important technical issue to be resolved by the subsequent porting work

is transforming the server from running as a standalone daemon to running as an inetd or

xinetd daemon. Instead of the jabberd14-1.6.0 server listening with its default daemon on

ports 5222 and 5269, the SSS process would listen on those ports and spawn instances of

the server at the classification level of the communicating entities.

During the installation of jabberd14-1.6.0 on STOP 7, the pwd.h and grp.h were

both commented out in the jabberd.c file because the STOP 7 does not implement those

services in the same way as a traditional Linux installation. Line 171 in poptconfig.c in

the pkg-config-0.23 was also commented out because it uses the getuid() function, which

also deals with the way user credentials are gathered and checked. These shortcuts

facilitated the installation and testing of the jabberd14-1.6.0 server on the XTS-400.

Because of time constraints, the code was not modified in order to obtain the user

information from the appropriate database maintained by the operating system.

C. SECURITY CONCERNS

The security concerns come from two different main sources. The first one is the

code and relates to bugs, memory leaks, buffer overflow and other flaws and

vulnerabilities that can exists in code. The second source of security concern resides in

the configuration of the server. Since the first issue cannot be addressed without a

thorough code review, which is outside the scope of this thesis, the issue dealing with the

configuration file is explored below.

Securing the jabberd14-1.6.0 server in the MYSEA environment can be done by

hardening the configuration settings of the jabberd.xml file. Below is a list of

recommendation that can be enforced by modifying the configuration file. They will

make the server more secure even though they will reduce the usability of the server.

- In-band registration. In the Internet environment, having in-band registration

setting makes sense, but it might not make sense in an intranet such as

MYSEA. This feature allows anyone to register on the server. If users need to

 74

go through an administrator to get an account on the MYSEA server, the

chance of supporting unwanted users should be inexistent.

- No remote administration. The administrator might be tempted to allow

him/herself to maintain the server from off site, but it would be quite a breach

if the administrator account were to be broken.

- Password protect private chat room by default. Some clients do not have

the option to configure the group chat rooms that they create and so would not

have the ability to choose extra protection for their private chat rooms. Some

users also do not care or do not know how to configure their rooms and only

use the default settings. Default password protection will ensure that

passwords are used.

This is not an exhaustive list and this is not a list that would work in all environments, but

it is one that applies in the MYSEA case where the goal is to guarantee a high level of

assurance while still using COTS.

D. SUMMARY

This chapter discussed the initial code review for the jabberd14-1.6.0 server,

brought up some technical issues that affect the future porting exercise and discussed

configuration issues that could improve the security of the server. The next chapter

discusses the future work needed to complete the porting of the jabberd14-1.6.0 server to

MYSEA.

 75

VI. FUTURE WORK AND CONCLUSION

This chapter discusses the tasks that still remain before the porting of jabberd14-

1.6.0 server to STOP OS 7 can be considered complete. These tasks focus on testing and

code review. The testing has two main parts and is addressed in the first section. The

following section discusses the code review. This chapter also states the conclusion of

this study in the third section.

A. TESTING

The testing that was described in Chapter IV used a client that is claimed to be

compliant with the XMPP protocol and verified the basic functionality of the different

Jabber server versions on different platforms. Those tests were sufficient for this study.

However, additional compliance tests should be performed before any code modification

is undertaken. Compliance testing requires that all of the MUST, MUST NOT, SHALL,

SHALL NOT, SHOULD, and SHOULD NOT from RFC 3920, RFC 3921 and all of the

XEP standards that the server claim to support be turned into test cases [2], [3], [27].

Those test cases can then be written in XML and bundled into a script that would report

the returned values as the scripts runs. The expected returned values would be recorded

before testing and compared against the actual values after testing. The script would run

on a Telnet session. This kind of testing procedure could be inspired by the Tigase Test

Suite [75]. Even though the suite only provides for testing servers that use the database

option for storage, the suite is open source and could be modified. By using the code base

of the Tigase Test Suite, not only compliance and functionality would be tested, but also

performance and stability [40].

An older project that is still an active and part of the sourceforge repository is the

Jabber Test Suite (also called JabberTest) [76]. For this suite, the focus is concentrated on

performance analysis. The suite is composed of several tools that can automate various

tests, such as “timing of account creating, message delivery, and concurrent session limits

[77].” Use of this test suite would be most appropriate after the server has been modified

because running the server with inetd might have an impact on performance.

 76

After or along with testing the server for compliance, it is imperative to undertake

a careful architectural analysis. The goal of the architectural analysis is to evaluate the

use of the server in a multilevel environment and the kind of problems that will have to

be dealt with when clients from different classifications join group chat rooms.

B. CODE REVIEW

The source code of the jabberd14-1.6.0 server as well as the external MUC

module version 0.5.2, JUD module version 0.5, and all external libraries (expat-2.0.1,

libidn-0.6.8, glib-2.0.7 and pkg-config-0.23) need to be reviewed in detail.

There are two main goals to the code review. The first is to understand the flow of

the code and be able to target the areas where the code needs modification in order to

comply with the STOP 7 environment. This tracing will also expose part of the code that

might be superfluous or that the environment should not support for security or other

reasons. Database storage might be an example. The second goal is to discover bugs,

buffer overflows, memory leaks and the like in the software.

C. CONCLUSION

This study’s goal was to perform preliminary work to facilitate porting XML-

based chat to an MLS environment, such as MYSEA. The tasks performed included

developing selection criteria, applying the criteria to select an open source Jabber server,

experimenting and testing it on both Linux and XTS-400 platforms, and defining the

technical and security issues to be addressed by subsequent porting work. The goal was

accomplished. It was assessed that more thorough testing and code review is needed

before porting the jabberd14-1.6.0 server to the MYSEA environment can be completed.

 77

APPENDIX A: XMPP EXTENSIONS

This appendix provides a reference to the full description of each XEP (XMPP

extension) mentioned in sub-section A 1 of chapter III [27]. The XEP standards process

[78] defines different types of extensions. There are four types: Standard Track,

historical, informational and procedural. Depending on their types, extensions have

different development states. The Status column lists the current state of each XEP. The

Active status is applicable to all extension types except for Standard Track. A proposed

extension is assigned Active status after it has been reviewed and accepted by the XMPP

Council. Draft status only applies to Standard Track extensions. A Draft extension means

that the extension has “undergone extensive discussion and technical review” and is

ready for implementation and deployment in operational environments [78]. Final status

is also only for Standard Track extensions and is reached after the Draft state. It indicates

that the extension has been coded in at least two separate ways and has been voted for

acceptance by the XMPP Council.

XEP

number
XEP name Status XEP Reference

0004 Data forms Final http://www.xmpp.org/extensions/xep-0004.html
0012 Last Activity Draft http://www.xmpp.org/extensions/xep-0012.html
0013 Flexible offline

message retrieval
Draft http://www.xmpp.org/extensions/xep-0013.html

0016 Privacy lists Draft http://www.xmpp.org/extensions/xep-0016.html
0020 Feature negotiation Draft http://www.xmpp.org/extensions/xep-0020.html
0030 Service discovery Final http://www.xmpp.org/extensions/xep-0030.html
0033 Extended stanza

addressing
Draft http://www.xmpp.org/extensions/xep-0033.html

0045 Multi-user chat Draft http://www.xmpp.org/extensions/xep-0045.html
0047 In-Band

Bytestreams
Draft http://www.xmpp.org/extensions/xep-0047.html

0048 Bookmarks Draft http://www.xmpp.org/extensions/xep-0048.html
0049 Private XML

storage
Active http://www.xmpp.org/extensions/xep-0049.html

0050 Ad-Hoc commands Draft http://www.xmpp.org/extensions/xep-0050.html
0054 vcard-temp Active http://www.xmpp.org/extensions/xep-0054.html
0059 Result set

management
Draft http://www.xmpp.org/extensions/xep-0059.html

 78

0060 Publish-subscribe Draft http://www.xmpp.org/extensions/xep-0060.html
0065 SOCKS5

bytestreams
Draft http://www.xmpp.org/extensions/xep-0065.html

0066 Out of band data Draft http://www.xmpp.org/extensions/xep-0066.html
0072 SOAP Over XMPP Draft http://www.xmpp.org/extensions/xep-0072.html
0077 In-Band

Registration
Final http://www.xmpp.org/extensions/xep-0077.html

0079 Advanced Message
Processing

Draft http://www.xmpp.org/extensions/xep-0079.html

0085 Chat state
notifications

Draft http://www.xmpp.org/extensions/xep-0085.html

0092 Software version Draft http://www.xmpp.org/extensions/xep-0092.html
0095 Stream initiation Draft http://www.xmpp.org/extensions/xep-0095.html
0096 File transfer Draft http://www.xmpp.org/extensions/xep-0096.html
0100 Gateway

interaction
Active http://www.xmpp.org/extensions/xep-0100.html

0106 JID Escaping Draft http://www.xmpp.org/extensions/xep-0106.html
0114 Jabber component

protocol
Active http://www.xmpp.org/extensions/xep-0114.html

0115 Entity capacities Draft http://www.xmpp.org/extensions/xep-0115.html
0124 Bi-directional-

streams over
synchronous HTTP
(BOSH)

Draft http://www.xmpp.org/extensions/xep-0124.html

0138 Stream
compression

Draft http://www.xmpp.org/extensions/xep-0138.html

0145 Annotations Active http://www.xmpp.org/extensions/xep-0145.html
0153 VCard-based

avatars
Active http://www.xmpp.org/extensions/xep-0153.html

0163 Personal eventing
via pubsub

Draft http://www.xmpp.org/extensions/xep-0163.html

0191 Simple
communications
blocking

Draft http://www.xmpp.org/extensions/xep-0191.html

0199 XMPP ping Draft http://www.xmpp.org/extensions/xep-0199.html
0202 Entity time Draft http://www.xmpp.org/extensions/xep-0202.html
0203 Delayed delivery Draft http://www.xmpp.org/extensions/xep-0203.html
0206 XMPP over BOSH Draft http://www.xmpp.org/extensions/xep-0206.html

 79

APPENDIX B: REDHAT 8 INSTALLATION INSTRUCTIONS

This appendix represents Van Emery’s installation instructions reformatted. It is a

step by step instruction guide for installing jabberd14-1.4.2 server that was used for the

experiment on Red Hat 8 VM. This installation assumes either connection to the Internet

in order to download source code or the use of the CD that contains all the necessary files

(make sure the CD is automatically detected in the VM). Use the direction under “Using

the Internet” or skip to the section called “Using the CD.”

- Start VMWare, start a RedHat 8 machine, make sure the Ethernet

option is bridge (Not NAT).

- Open a terminal window (under system tools)

- Create a directory called Downloads in root. (mkdir Downloads)

and navigate to it (cd Downloads)

Using the Internet

- Open a browser and navigate to

www.vanemery.com/Linux/Jabber/jabberd.html. On that page,

scroll to the section called “Getting the Code.”

- Click on jabber-1.4.2.tar.gz (674K),

- Select “save this file to disk”, navigate to the Downloads directory,

click “OK.” Click “Save.” Click “Close” when the downloading is

done.

- Repeat the step above for the following files: mu-conference-

0.5.2.tar.gz (46K), jud-0.5.tar.gz (5.3K), and vanjabfiles.tar.gz

(7.5K)

- Right click on daemontools-0.70-5.i686.rpm and choose “Save Link

Target As…” Click “Save”. Click “Close.”

- Close the browser.

 80

Using the CD

- Open the root folder, open the Downloads folder

- Insert the CD in the machine

- Open the “Jabber Installation” folder on the CD

- Open the RedHat8 folder on the CD

- Copy all of the documents from the “RedHat8 modules” folder into

the Downloads directory

- Eject the disk

- Close all windows except the terminal and navigate to

/root/Downloads.

Common installation steps

- [root@im Downloads]# cp jabber-1.4.2.tar.gz /usr/local

- [root@im Downloads]# cd /usr/local

- [root@im local]# gunzip jabber-1.4.2.tar.gz

- [root@im local]# tar xvf jabber-1.4.2.tar

- [root@im local]# mv jabber-1.4.2 jabber

- [root@im local]# rm jabber-1.4.2.tar. At the question, type “y.”

- [root@im local]# cd jabber

- [root@im jabber]# ./configure --enable-ssl

- [root@im jabber]# make

Next, create a user named "jabber" and some directories with the proper permissions.
You will note that we first make sure that UID 400 is not in use. Since the user "jabber"
only exists for running jabberd, we are giving it a UID < 500.

- [root@im jabber]# grep :400: /etc/passwd

- [root@im jabber]# useradd -u 400 -M -d /usr/local/jabber jabber

 81

- [root@im jabber]# mkdir --mode 0770 /etc/jabberd

- [root@im jabber]# mkdir --mode 0770 /var/run/jabberd

- [root@im jabber]# mkdir --mode 0770 /var/log/jabberd

- [root@im jabber]# chown jabber.jabber /etc/jabberd

- [root@im jabber]# chown jabber.jabber /var/run/jabberd

- [root@im jabber]# chown jabber.jabber /var/log/jabberd

- [root@im jabber]# cd /root/Downloads

Next, unpack, compile, and install the multiuser conference component.

- [root@im Downloads]# cp mu-conference-0.5.2.tar.gz

/usr/local/jabber

- [root@im Downloads]# cd /usr/local/jabber

- [root@im jabber]# gunzip mu-conference-0.5.2.tar.gz

- [root@im jabber]# tar xvf mu-conference-0.5.2.tar

- [root@im jabber]# rm mu-conference-0.5.2.tar. At the question,

type “y.”

- [root@im jabber]# cd mu-conf*

- [root@im mu-conference-0.5.2]# make

- [root@im mu-conference-0.5.2]# cd /root/Downloads

Next, unpack, compile, and install the JUD component.

- [root@im Downloads]# cp jud-0.5.tar.gz /usr/local/jabber

- [root@im Downloads]# cd /usr/local/jabber

- [root@im jabber]# gunzip jud-0.5.tar.gz

- [root@im jabber]# tar xvf jud-0.5.tar

- [root@im jabber]# mv jud-ansi-c jud-0.5

 82

- [root@im jabber]# rm jud-0.5.tar At the question, type “y.”

- [root@im jabber]# cd jud-0.5

- [root@im jud-0.5]# make

- [root@im jud-0.5]# cd ..

Next, make a directory for the conference and set permissions.

- [root@im jabber]# mkdir /usr/local/jabber/spool/im.mysea.edu

- [root@im jabber]# cd /usr/local/

- [root@im local]# chown -R jabber.jabber /usr/local/jabber

- [root@im local]# chmod 0770 /usr/local/jabber

- [root@im local]# cd /root/Downloads

Next, install the daemontools package.

- [root@im Downloads]# rpm -ivh daemontools-0.70-5.i686.rpm

- [root@im Downloads]# rpm -q daemontools

Next, extract the scripts.

- [root@im Downloads]# cp vanjabfiles.tar.gz /usr/local/jabber

- [root@im Downloads]# cd /usr/local/jabber

- [root@im jabber]# gunzip vanjabfiles.tar.gz

- [root@im jabber]# tar xvf vanjabfiles.tar

Add the jabber TCP ports to /etc/services.

- [root@im jabber]# cp /etc

- [root@im etc]# gedit services &

- Add the following lines:

Jabber Ports

jabc 5222/tcp # Unencrypted jabber client-to-server

 83

jabc-ssl 5223/tcp # SSL encrypted jabber client-to-server

jabs2s 5269/tcp # Jabber server-to-server

- Close and save the file

- [root@im etc]# cd /usr/local/jabber

Next, configure the server with the appropriate ownership and permissions.

- [root@im jabber]# cp –v jabber.xml.* /etc/jabberd

- [root@im jabber]# mv jabber.xml jabber.xml.org

- [root@im jabber]# cp -v jabber.xml.org /etc/jabberd

- [root@im jabber]# cd /etc/jabberd

- [root@im jabberd]# cp -v jabber.xml.c2s jabber.xml

- [root@im jabberd]# chown jabber.jabber *

- [root@im jabberd]# chmod 0660 *

- [root@im jabberd]# ls –l

The result of the ls –l command should be (other information might be different):
total 60
-rw-rw---- 1 jabber jabber 8380 Jul 27 01:48 jabber.xml
-rw-rw---- 1 jabber jabber 8380 Jul 22 07:27
jabber.xml.c2s
-rw-rw---- 1 jabber jabber 20667 Jul 19 18:49
jabber.xml.org
-rw-rw---- 1 jabber jabber 9620 Jul 27 01:48
jabber.xml.s2s

Next, setup the Linux run scripts so that jabberd can be started and stopped automatically.

The script is called jabberd.run (make sure you are root)

- [root@im jabberd]# cd /usr/local/jabber

- [root@im jabberd]# tar xvf vanjabfiles.tar

- [root@im jabberd]# cp jabberd.run /etc/init.d/jabberd

- [root@im Downloads]# cd /etc/init.d

- [root@im init.d]# chown root.root /etc/init.d/jabberd

 84

- [root@im init.d]# chmod 0750 /etc/init.d/jabberd

- [root@im init.d]# ls -l jabberd
-rwxr-x--- 1 root root 2983 Jul 17 23:22 jabberd

- [root@im init.d]# chkconfig --add jabberd

- [root@im init.d]# chkconfig --list jabberd
jabberd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

Next, setup automatic log rotation using jabberd.logrotate file. Global defaults are
configured in /etc/logrotate.conf . Need to be root in order to do this.

- [root@im init.d]# cd /usr/local/jabber

- [root@im jabber]# cp jabberd.logrotate /etc/logrotate.d/jabberd

- [root@im Downloads]# cd /etc/logrotate.d

- [root@im logrotate.d]# chown root.root jabberd

- [root@im logrotate.d]# chmod 0660 jabberd

- [root@im logrotate.d]# ls -l jabberd

The result of the ls –l command should be:
-rw-rw---- 1 root root 217 Jul 17 23:35 jabberd

Next, create a user that will be the administrator of the group chat.

- [root@im logrotate.d]# cd /usr/local/jabber/spool

- [root@im spool]# mkdir conference.im.mysea.im32

- [root@im spool]# cd conference.im.mysea.im

- [root@im spool]# gedit rooms.xml &

- Click “Yes”, close the file.

- [root@im conference.im.mysea.edu]# cd /usr/local/jabber

- [root@im jabber]# cp jabadd /usr/local/sbin33

- [root@im jabber]# cd /usr/local/sbin/

32 This folder will hold the MUC rooms. If a room is deleted, the server will have to be restarted in

order for the change to take effect.
33 All of the scripts can be copied into the /usr/local/sbin directory and all their permissions can be

changed. Other script might need to have the FQDN variable edited also (jabdel)

 85

- [root@im sbin]# chown root.root usr/local/sbin

- [root@im sbin]# chmod 0770 jabadd

- [root@im sbin]# gedit jabadd &

- Change the FQDN to “im.mysea.edu”, save and close

- [root@im sbin]# jabadd testuser

Give it a password and enter. Then, type n and enter. To verify that testuser.xml was

created, cd to /usr/local/jabber/spool/im.mysea.edu and ls

Next, edit the configuration file

- cd /etc/jabberd

- ifconfig (record the IP address of the machine)

- gedit jabber.xml

- Change all of the instances of jabs.org with the name of the server

(im.mysea.edu) and change all of the instances of 172.17.77.2 with

the IP address of the server (found 2 steps back)

- Search for “thor” and replace it by testuser.

- Close and save jabber.xml file

Next, make a TLS/SSL certificate (self-signed) and place it in the /usr/local/jabber

directory.

- [root@im jabberd]# cd /usr/local/jabber

- [root@im jabber]# /usr/bin/openssl req -new -x509 -newkey

rsa:1024 -days 3650 -keyout privkey.pem -out key.pem

- Enter a pass phrase (you will be asked for it later) and all other

information when prompted

- [root@im jabber]# /usr/bin/openssl rsa -in privkey.pem -out

privkey.pem

 86

- [root@im jabber]# cat privkey.pem >> key.pem

- [root@im jabber]# rm privkey.pem. type “y.”

- [root@im jabber]# chown jabber.jabber key.pem

- [root@im jabber]# chmod 0400 key.pem

- [root@im jabber]# ls -l key.pem

The result of the ls –l command should be:
-r-------- 1 jabber jabber 2274 Jul 17 16:53 key.pem

Next, start the service as a root user.

- [root@im jabber]# cd /etc

- [root@im etc]# gedit hosts

- Add the following line:

 IP address put in jabber.xml file im.mysea.edu im

- Restart the computer. Log on, start a terminal session

- [root@im root]# /etc/init.d/jabberd start 34

The result of the jabberd start command should be similar to35:
Starting jabberd: jabberd.
[root@im root]# 20030717T15:45:40: [notice] (-internal): initializing
server

Before connecting clients, change the hosts file on the client machine36 to include the IP
address of the server and its name (im.mysea.edu). Once you have changed the hosts file,
restart the computer. The server requires connection on port 5223.

34 To check the status of the service type /etc/init.d/jabberd status

To stop the service type: /etc/init.d/jabberd stop (or use Ctrl c key combination)

To check if all the ports are listening: netstat -ta
35 Time stamp can not be exactly the same
36 You need to be administrator or root to do that.

 87

Component File + Size Notes
Psi Jabber
Client psi-0.9-1.i386.rpm (1.2M) RPM, for RH 9 Linux x86

Psi Icon Sets psi-iconsets-0.1-0.i386.rpm
(120K) RPM, for RH 9 Linux x86

QSSL Package qssl-2.0-0.i386.rpm (277K) RPM, RH 9, has SSL/TLS
libs

Win32 Client psi-0.9-setup.exe (2.8M) Win32 installer, with SSL

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

APPENDIX C: FEDORA 7 INSTALLATION INSTRUCTIONS

This appendix is the step by step instructions for installing Jabberd14-1.6.1.1 that

was used for the experiment on Fedora 7 VM. This installation assumes that you are

using the CD that contains all the necessary files (make sure the CD is automatically

detected in the VM). The files on the CD are inside the folder called Fedora 7 modules

and are as follow: adminguide_files, adminguide.html, jabberd14-1.6.1.1.tar.gz, mu-

conference_0.7.tar.gz and patch.html

- Start VMWare, start a Fedora 7 machine, make sure the Ethernet

option is bridge (Not NAT).

- Turned the firewall and SELinux off (System Firewall and

SELinux select Disabled)

Change the hosts file.

- Open a terminal window (Applications System Tools

Terminal),

- ifconfig (record the IP address of the machine)

- gedit /etc/hosts

- Add the following line under the 127.0.0.1 line:

The IP address retrieved two steps ago im.mysea.edu im

- Close and save the file

- Verify that the gnutls package is installed (Applications

Add/Remove Software List). If the gnutls-1.4.1 or better is not

“checked”, then check the box.

- Install pthreat: check both pth – 2.0.7-1 and pth-dev – 2.0.7-1.

- Install libtasn1: check the libtasn1 – 0.3.9-1, libtasn1-devel – 0.3.9-1

and libtasn1-tools – 0.3.9-1. Click on the “Apply” button,

 90

“Continue,” click “OK for dependencies, “OK.” Close the Package

Manager window when done.

- Double click the directory called “root’s Home” on the Desktop

- Double click the directory called Download

- Insert the CD in the machine

- Double click “Computer” on the Desktop, double click on CD-

RW/DVD+RW

- Double click the folder called jabber installation and the folder

called called “Fedora 7 modules”

- Drag the contain of the folder called “Fedora 7 modules” into the

Download directory

- Close all the windows, except the terminal window

- Eject the CD (right click on it)

Installing Jabberd

- In the terminal window, type: cd /root/Download

- gunzip jabber14-1.6.1.1.tar.gz

- tar xfv jabber14-1.6.1.1.tar

- cd jabberd14-1.6.1.1

- gedit configure.ac &

- Apply the patch below. Instead of having to type all those lines, you

can copy and paste by opening the file called patch.html in the

Downloads directory.

Modified:
 branches/RELEASE-1_6_1/configure.ac

Modified: branches/RELEASE-1_6_1/configure.ac
===
=======

 91

--- branches/RELEASE-1_6_1/configure.ac (original)
+++ branches/RELEASE-1_6_1/configure.ac Wed Aug 1 11:48:38 2007
@@ -6,7 +6,7 @@

 AC_INIT(jabberd/jabberd.h)
-AM_INIT_AUTOMAKE(jabberd14,1.6.1.1)
+AM_INIT_AUTOMAKE(jabberd14,1.6.1.1-p1)
 AM_CONFIG_HEADER(config.h)
 AC_LANG(C++)

@@ -272,6 +272,15 @@
 AC_DEFINE(HAVE_GNUTLS_EXTRA,,[if GnuTLS-extra should be compiled
in])
 fi

+dnl check for libtasn
+PKG_CHECK_MODULES(LIBTASN, libtasn1 >= 0.3.0, haslibtasn=yes,
haslibtasn=no)
+if test $haslibtasn = "yes" ; then
+ CPPFLAGS="$CPPFLAGS $LIBTASN_CFLAGS"
+ LDFLAGS="$LDFLAGS $LIBTASN_LIBS"
+else
+ AC_MSG_ERROR([Couldn't find required libtasn1 installation])
+fi
+
 dnl check for libidn
 AC_ARG_WITH(libidn, AC_HELP_STRING([--with-libidn=DIR],
 [Where to find libidn (required)]),
===

- Save and close the file

- Close the patch.html file if you used it

- ./configure (need to be located in the jabberd directory)

- make install

- cd ..

- rm jabber14-1.6.1.1.tar. At the prompt type “y”

- gunzip mu-conference_0.7.tar.gz

- tar xfv mu-conference_0.7.tar.gz

- cd mu-conference_0.7

- make

 92

Configure the jabber server

- cd /usr/local/etc

- gedit jabber.xml

- Change all of the instances of localhost with im.mysea.edu

- Search for <dhparams> and comment that line out.

- Search for “<service id=”inject” and comment out all the lines until

“</service>”

- The flat file option needs to be activated37. Locate the <xdb> tag.

Remove all of the instructions between the <xdb> and </xdb> tags,

including those tags. Add the following text:
<xdb id="xdb">
 <host/>
 <ns/>
 <load>
 <xdb_file>/usr/lib/libjabberdxdbfile.so</xdb_file>
 </load>
 <xdb_file xmlns="jabber:config:xdb_file">
 <spool><jabberd:cmdline
flag='s'>/usr/local/var/spool/jabberd</jabberd:cmdline></spool>
 <timeout>3600</timeout>
 <sizelimit>500000</sizelimit>
 </xdb_file>
 </xdb>

- To implement MUC, search for the word browse and include the

following text:
<item category="conference" type="public" jid="conference.im.mysea.edu"
name="Public Conferencing">
 <ns>http://jabber.org/protocol/muc</ns>
 </item>

- Search the word service and add the following code before

“<service id=“c2s”>” tag:
<service id="muclinker">

37 The instructions are in the README.filespool in the directory where jabberd14 resides.

 93

 <host>conference.im.mysea.edu </host>
 <accept>
 <ip>IP of the server38</ip>
 <port>31518</port>
 <secret>secret</secret>
 </accept>
 </service>

- Close and save the file

- cd /root/Download

- cd mu-conference_0.7

- cp mu-default.xml muc.xml

- gedit muc.xml

- Replace all instances of localhost to im.mysea.edu except the one

between the <ip> tag where you need to type the IP address of the

server. Change the port to 31518.

- Close and save the file

- mkdir syslogs

- mkdir spool

- cd spool

- mkdir chat.im.mysea.edu

- cd ..

- cd ..

- cd jabberd14-1.6.1.1/xdb_file/.libs

- cp libjabberdxdbfile.so libjabberdxdbfile.la libjabberdxdbfile.lai

libjabberdxdbfile.so.2 libjabberdxdbfile.so.2.0.0

libjabberdxdbfile.so.2.0.0T xdb_file.o xdbfiletool /usr/lib

- Restart the computer

38 Note that this must be the IP (of the form 0.0.0.0)

 94

Start the service,

- Open a terminal window

- cd /root/Download/jabberd14-1.6.1.1

- jabberd/jabberd39

- open another terminal

- src/mu-conference –c muc.xml &40

Now, refer to the Appendix B in order to use clients to test the server.

39 In order to start the service in debugging mode type jabberd/jabberd –D. It is also helpful to pipe it

to a file in order to read the debugging as it goes much too fast on the screen >/tmp/debug 2>&1.
40 In order to run in debugging mode, exclude the & at the end of the command.

 95

APPENDIX D: XTS-400 INSTALLATION INSTRUCTIONS

This appendix is the step by step instructions for installing Jabberd14-1.6.0 that

was used for the experiment on XTS-400 STOP 7.0 beta 1. This installation assumes that

you are using the CD that contains all the necessary files. Before using the XTS-400,

perform the steps in Appendix B of Networking Configuration of [79].

- Log in41 (change your privilege level to syslo:admin.admin by

typing sec_label –p –l :syslo)

- vi /xts/etc/hosts

- Add the following line:

- 172.20.108.51 thesis.nps.edu jabber

- Close and save the file

Getting the source code from the CD

- Load the CD

- mkdir download

- sec_label –p –l :sys

- sec_label –l :syslo /dev/sdb

- sec_label –p –l :syslo

- mount –r /dev/sdb /mnt/cdrom42

- cp –r /mnt/cdrom/Jabber Installation/XTS400 modules/* /download

- umount /mnt/cdrom

- sec_label –l :sys /dev/sdb

41 Make sure you are syslo:admin.admin (check by typing sec_label –p). If you are not, then execute

this command: sec_label –p –l :syslo
42 The system that those instructions were tested on had the /mnt/cdrom directory path already made.

 96

- Eject the CD

Installing the pkg-config dependency

- cd /download/

- gunzip pkg-config-0.23.tar.gz

- tar xvf pkg-config-0.23.tar

- cd pkg-config-0.23

- ./configure

- vi poptconfig.c and comment out line 17143

- make install

- cp /usr/local/bin/pkg-config /xts/bin

- cd ..

- rm pkg-config-0.23.tar. Type “y” when prompted.

Installing the expat dependency

- gunzip expat-2.0.1.tar.gz

- tar xvf expat-2.0.1.tar

- cd expat-2.0.1

- ./configure

- make install

- cd ..

- rm expat-2.0.1.tar. Type “y” when prompted.

Installing the libidn dependency

- gunzip libidn-0.6.8.tar.gz

- tar xvf libidn-0.6.8.tar

- cd libidn-0.6.8

- ./configure

- make install

- cd ..

- rm libidn-0.6.8.tar. Type “y” when prompted.

43 You can also search for the word getuid in the file. The first instance of it is line 171. This editing

has to be done because the method in that line use the unistd.h and it is not implemented on STOP 7.

 97

Installing the glib dependency

- gunzip glib-2.0.7.tar.gz

- tar xvf glib-2.0.7.tar

- cd glib-2.0.7.

- ./configure

- cp /usr/local/lib libglib-2.0.la libglib-2.0.so libglib-2.0.so.0 libglib-

2.0.so.0.0.7 /xts/lib

- make install

- rm glib-2.0.7.tar. Type “y” when prompted.

Preparing to install Jabberd14

- cd /usr/local

- mkdir var

- cd var

- mkdir spool

- mkdir log

- cd spool

- mkdir jabberd

- cd jabberd

- mkdir thesis.nps.edu

- cd ..

- cd ..

- cd log

- mkdir jabberd

Installing Jabberd14

- cd /download

- gunzip jabberd14-1.6.0.tar.gz

- tar xvf jabberd14-1.6.0.tar

- cd jabberd14-1.6.0/jabberd

- vi jabberd.cc

- Commented out:

 98

#include <pwd.h> , #include <grp.h> and from line 266 to line 283.

- Close and save the file

- cd ..

- ./configure

- make install

- Move the libraries starting with libidn.a until

libjabberdxdbsql.so.1.0.0 from /usr/local/lib to /xts/lib using the cp

command

- cd /download

- rm jabberd14-1.6.0.tar. Type “y” when prompted.

- cd jabberd14-1.6.0

- mkdir spool

- cd spool

- mkdir thesis.np.edu

- cd /download

Configuring the server

- cd /usr/local/etc

- vi jabber.xml

- Change all of the instances of localhost with the name of the server

(thesis.nps.edu) ,

- The flat file option needs to be activated44. Locate the <xdb> tag.

Remove all of the instructions between the <xdb> and </xdb> tags.

44 The instructions are in the README.filespool in the directory where jabberd14 resides.

 99

Add the following text:
<xdb id="xdb">
 <host/>
 <ns/>
 <load>
 <xdb_file>/usr/local/lib/libjabberdxdbfile.so</xdb_file>
 </load>
 <xdb_file xmlns="jabber:config:xdb_file">
 <spool><jabberd:cmdline
flag='s'>/usr/local/var/spool/jabberd/thesis.nps.edu</jabberd:cmdline><
/spool>
 <timeout>3600</timeout>
 <sizelimit>500000</sizelimit>
 </xdb_file>
 </xdb>

- To implement MUC, search for the word “browse” and include the

following text:
<item category="conference" type="public"
jid="conference.thesis.nps.edu" name="Public Conferencing">
 <ns>http://jabber.org/protocol/muc</ns>
 </item>

- Search the word “service” and add the following code before

“<service id=“c2s”>” tag:
<service id="muclinker">
 <host>conference.thesis.nps.edu</host>
 <accept>
 <ip>172.20.108.51</ip>
 <port>31518</port>
 <secret>secret</secret>
 </accept>
 </service>

- Search for the sequence log id and comment out the 6 lines that

include <syslog>locall0</syslog> and uncomment the alternative

that includes <file>/usr/local/var/log/jabberd/error.log</file> below.

 100

Installing MUC

- cd /download

- gunzip mu-conference_0.7.tar.gz

- tar xvf mu-conference_0.7.tar

- cd mu-conference_0.7

- make

- cd /download

- rm mu-conference_0.7.tar. Type “y” when prompted.

- cd mu-conference_0.7

- mkdir spool

- mkdir syslogs

- cd spool

- mkdir thesis.nps.edu

Configuring muc

- cd /download/mu-conference_0.7

- cp muc-default.xml muc.xml

- vi muc.xml

- Change all of the localhost for thesis.nps.edu and IP addresses to
172.20.108.51. Change the port to 31518. Save and close the file

Installing jud

- cd /download

- gunzip jud-0.5.tar.gz

- cp jud-0.5.tar /download/jabberd14.1.6.0

- cp platform-settings /download/jabberd14.1.6.0

- cd jabberd14-1.6.0

- tar xvf jud-0.5.tar

- make

- rm jud-0.5.tar. Type “y” when prompted.

 101

Configuring jud

- vi /usr/local/etc/jabber.xml

- search for word browse and add the following lines
<service type="jud" jid="jud.thesis.nps.edu" name="thesis.nps.edu User
Directory">
 <ns>jabber:iq:search</ns>
 <ns>jabber:iq:register</ns>
 </service>

- search for word service and add the following lines
<service id="jud">
 <host>jud.thesis.nps.edu</host>
 <load><jud>./jud/jud.so</jud></load>
 <jud xmlns="jabber:config:jud">
 <vCard>
 <FN>User Directory on thesis.nps.edu</FN>
 <DESC>This provides a simple user directory service.</DESC>
 <URL>http://jud.thesis.nps.edu/</URL>
 </vCard>
 </jud>
 </service>

Copying things around

- cp /download/jabberd14-1.6.0/jsm/.libs/libjabberdsm.so

/usr/local/lib

- cp /download/jabberd14-1.6.0/xdb_file/.libs/libjabberdxdbfile.so

/usr/local/lib

- cp /download/jabberd14-1.6.0/pthsock/.libs/libjabberdpthsock.so

/usr/local/lib

- cp /download/jabberd14-1.6.0/dnsrv/.libs/libjabberddnsrv.so

/usr/local/lib

- cp /download/jabberd14-1.6.0/dialback/.libs/libjabberddialback.so

/usr/local/lib

 102

- cp /usr/local/lib/libgthread-2.0.la libgthread-2.0.so libgthread-

2.0.so.0 libgthread-2.0.so.0.0.7 libexpat.so.1 libexpat.so.1.5.2

/xts/lib

To start the services

- cd /download/jabberd14-1.6.0

- jabberd/jabberd45

- Press the alt F2 combination to get another screen, log in

- src/mu-conference –c muc.xml &46

Now, refer to the Appendix B in order to use clients to test the server.

45 In order to start the service in debugging mode type jabberd/jabberd –D. >/tmp/debug 2>&1.
46 In order to run in debugging mode, exclude the & at the end of the command.

 103

APPENDIX E: INSTALLATION INSTRUCTIONS FOR GAJIM
ON WINDOWS XP PROFESSIONAL

This appendix gives the step by step process to install and run the Gajim version

0.11.4 client on Windows XP Professional version 5.1.2600 that was used for the testing

sub-section of Chapter IV. The machine used below is a laptop Inspiron 5150.

Power on the Windows XP Professional machine and log in as a valid user with

enough privilege to install software.

Installing Gajim

- Insert the CD in the drive and browse the CD
- Double click the Jabber Installation folder
- Click and drag the icon named gajim-0.11.4+gtd-4.exe onto the Desktop.

 Select “Copy here” if necessary.
- Close the browsing window and eject the CD
- Double click the icon named gajim-0.11.4+gtd-4.exe
- On the Welcome to the Gajim Setup Wizard, click Next
- On Select destination Location, click Next
- Make sure that Full installation is selected in the drop down box and click

Next
- On Select start menu folder, click Next
- Make sure the “Create a desktop icon” is selected and click Next
- Click Install
- Deselect the box “Launch application” and click Finish
- Right click on gajim-0.11.4+gtd-4.exe and select “Delete”, click Yes when

prompted

Setting up the Environment

On the server machine
- Open a terminal window and type “ifconfig”
- Record the IP address for later use
- Type “exit”

On the client machine (Windows)
- On the Desktop, double click My Computer
- Double click “Local Disk (C:)” (if the files are hidden, click the “show the

content of this folder)
- Double click the “WINDOWS” folder
- Double click the “system32” folder
- Double click the “drivers” folder
- Double click the “etc” folder

 104

- Right click the “hosts” file and choose open
- Choose Notepad from the list of applications offered and click OK
- Place your cursor at the end of the “127.0.0.1 localhost” and press the

Enter key
- Type the ip address of the server recorded in “On the server machine”

part above, enter a tab and type the name of the server (for example:
172.20.108.51 thesis.nps.edu jabber)

- Close and save the hosts file
- Close the browsing window
- Click Start shut down
- Click Restart
- Restart the computer

Starting Gajim
- Click Start Program Gajim Gajim (the Gajim Account Creation

Wizard will open if an account was not already created.) Click Cancel if
the Wizard is open, and proceed to Appendix F.

 105

APPENDIX F: TEST PROCEDURES

The appendix contains the step by step instructions that were taken to test the

jabberd14 server on the Fedora 7 and STOP 7 beta operating systems. All of the tests

below use the Gajim client and assume that jabberd14-1.6.1 server and jabberd14-1.6.0

server is used on Fedora 7 or XTS-400 STOP 7 beta, respectively. The installation

instructions for setting up these platforms are in Appendix C and D, respectively.

Because the JUD module was not installed in the Fedora experiment, hence it was not

tested on that platform. This document is formatted with im.mysea.edu for the name of

the server, but can be used for the STOP 7 by replacing the server name by

thesis.nps.edu.

A. Account management (A1 through A26)

A1 Register account with a valid JID

1. Start Gajim
2. Edit Accounts New
3. Select the radio button “I want to register to a new account”
4. Click Forward
5. Username: testuser1
6. Server: im.mysea.edu
7. Password: 1234
8. Retype Password: 1234
9. Click Forward (The client will display a search bar and an announcement box)
10. Click Finish
11. Enter some personal information and click OK47
12. Close the account dialogue box
13. Actions Quit48

A2 Register account with an invalid JID

1. Start Gajim
2. Edit Accounts New
3. Select the radio button “I want to register to a new account”
4. Click Forward
5. Username: test&user

47 A welcome message is delivered by the server and make the client blink.
48 There might be a message regarding a history log file that it is making, click OK

 106

6. Server: im.mysea.edu
7. Password: 1234
8. Retype Password: 1234
9. Click Forward (The client will display an alert box labeled: “Invalid Jabber ID”)
10. Click OK
11. Change the user name to be testuser2
12. Change the server to be im.myse.edu (if testing the thesis.nps.edu, change the

name to thesis.ns.edu)
13. Click Forward (After searching for a few seconds, the client will display an alert

box indicating that “An error occurred during account creating: Could not connect
to im.myse.edu”

14. Click Cancel
15. Close the account dialogue box
16. Actions Quit

A3 Register account with a password

1. Start Gajim
2. Edit Accounts New
3. Select the radio button “I want to register to a new account”
4. Click Forward
5. Username: testuser12
6. Server: im.mysea.edu
7. Password: 1234
8. Retype Password: 1234
9. Click Forward (The client will display a search bar and an announcement box

informing of the successful account creation)
10. Click Finish
11. Enter some personal information and click OK49
12. Close the account dialogue box
13. Actions Quit

A4 Register account without a password

1. Start Gajim
2. Edit Accounts New
3. Select the radio button “I want to register to a new account”
4. Click Forward
5. Username: testuser123
6. Server: im.mysea.edu
7. Password:
8. Retype Password:
9. Click Forward (The client will display an alert box “Invalid password : You must

enter a password for the new account”)
10. Click OK

49 A welcome message is delivered by the server and make the client blink.

 107

11. Click Cancel
12. Close the account dialogue box
13. Actions Quit

A5 Connect to server using SSL (legacy on port 5223)

1. Start Gajim
2. Right click on the first account that was registered (testuser1) status Offline
3. Edit Accounts
4. Select the testuser1 account
5. Click Modify
6. Click the Connection tab
7. Check the checkbox “use SSL (legacy)50”
8. Click Save
9. Close
10. Right click on the testuser1 in the Gajim’s main window status available

(this will take a few seconds until a message comes back: “Cannot connect to
im.mysea.edu”)

11. Close the account dialogue box
12. Actions Quit

A6 Connect to server without SSL (port 5222)

1. Start Gajim
2. Right click on the first account that was registered (testuser1) status Offline
3. Edit Accounts
4. Select the testuser1 account
5. Click Modify
6. Click the Connection tab
7. Deselect the checkbox “use SSL (legacy)”
8. Click Save
9. Close
10. Right click on the testuser1 in the Gajim’s main window status available

(the icon will turn green again)
11. Actions Quit

A7 Connect to server with SSL (port 5222)
The Gajim client does not allow for this configuration explicitly. The server has to
enforce that setting.

A8 Connect with a password (in order to check this case, extra steps in the account screen
need to be done)

1. Start Gajim
2. Edit Accounts

50 Note that the port in the gray box at the bottom of the dialogue box changed to 5223.

 108

3. Select the testuser1 account
4. Click Modify
5. Uncheck the “Save password” checkbox
6. Click Save
7. Click Close (make sure that the user is offline)
8. Right click on the user status available (a dialog box will appear asking for

a password)
9. Enter 1234
10. Click OK (the icon will turn green again)
11. Actions Quit

A9 Connect without a password (in order to check this case, extra steps in the account
screen need to be done)

1. Start Gajim
2. Edit Accounts
3. Select the testuser1 account
4. Click Modify
5. Uncheck the “Save password” checkbox
6. Click Save
7. Click Close (make sure that the user is offline)
8. Right click on the user status available (a dialog box will appear asking for

a password)
9. Click OK
10. An alert window will come up with the following message: “Authentication failed

with im.mysea.edu”
11. Click OK
12. Actions Quit

A10 Edit personal information

1. Start Gajim
2. Right click on the user
3. Select Modify account
4. Click on the Personal Information tab
5. Click on “Edit Personal Information…”
6. Enter your name and all other information desired
7. Click OK
8. Actions Quit

A11 Add a contact that has a valid JID (this assumes that another client has successfully
registered with the server on a different machine. Refer to A1 to register a user)

1. Start Gajim
2. Right click on the user Add contact…
3. User ID: testuser1@im.mysea.edu
4. Click Add (the testuser1 screen will bring a window with the message “I would

like to add you to my contact list”)

 109

5. Click Authorize (Authorization accepted window will appear once the authorized
button is pressed)51

6. Click OK on all of the dialogue boxes so that both users are added in each other’s
contact list.

7. Actions Quit

A12 Add a contact that has an invalid JID (same assumptions as for A11)

1. Start Gajim
2. Right click on the user Add contact…
3. User ID: test&user1@im.mysea.edu52
4. Add (a window Invalid User ID will appear on the screen)
5. Click OK
6. Click Cancel
7. Actions Quit

A13 Delete contacts (buddies) from the contact list (same assumptions as for A11)

1. Start Gajim
2. Right click on the contact Remove from Roster (a window displaying the

following message appears on the screen: Contact “usertest1” will be removed
from your roster)

3. Click OK

A14 Forbid contacts to see status (same assumptions as for A11)

1. Start Gajim
2. Right click on the contact Subscription Forbid him/her to see my status (a
window displaying: Authorization has been removed will appear on the screen
3. Click OK (the user that was removed get a dialogue box signaling that it was
removed from the contact’s list. Click OK)

A15 Delete an account on client only (this test assumes that there is an account properly
registered with the server)

1. Start Gajim
2. Edit Accounts
3. Select testuser1
4. Click on remove53 (an alert window opens and requires the client to choose
between: “remove account only from Gajim or Remove account from Gajim and from
server”)

51 Gajim has this feature that as soon as a user request to add a contact, than it automatically asks the

other contact if it wants to subscribe to that user’s roster.
52 Giving an invalid server name returns the user with a question mark and a “server-unavailable”

under the user icon.
53 If the user is online and there are chat conversations open, there might be different dialogue box

open.

 110

5. Click Remove (because the client was connected with the server, an additional
dialogue box appear. Click OK)

A16 Delete an account on both the client and the server (this test assumes that there is an
account properly registered with the server)

1. Start Gajim
2. Edit Accounts
3. Select testuser1
4. Click on remove54 (an alert window opens and requires the client to choose
between: “remove account only from Gajim or Remove account from Gajim and from
server”)
5. Select the second radio button (if the client was online, then there will be an

additional dialogue box. Click OK)
6. Click Remove
7. Click Close
8. Actions Quit

A17 Connect to the server with a deleted account after test A15 is performed

1. Start Gajim
2. Edit Accounts
3. Click New
4. Click Forward
5. Username: testuser1
6. Server: im.mysea.edu
7. Password: 1234
8. Click Forward
9. Click Finish
10. Click Close
11. Actions Quit

A18 Connect to the server with a deleted account after test A16 is performed (if there are
no more users in this client, Gajim will try to connect or register. Click Cancel)

1. Start Gajim
2. Edit Accounts
3. Click New
4. Click Forward
5. Username: testuser1
6. Server: im.mysea.edu
7. Password: 1234
8. Click Forward
9. Click Finish55

54 If the user is online and there are chat conversations open, there might be a different dialogue box

open. Also if the account was just open and the server welcome message was not read, Gajim will not allow
for the account to be removed.

55 Even though the user appears in the client main window, it is unable to connect.

 111

10. Click Close
11. Actions Quit

A19 Send server message to all users connected to the server)

1. Start Gajim
2. Actions Advanced Administrator Send Server Message
3. Click Send and Close (the client should indicate that it has receive a message and
that message should let it know that this action is “not-allowed” – need to double
click on the message first)
4. Close the window
5. Actions Quit

A20 Retrieve other users’ contact information (this test assumes that at least one contact
is in the contact list)

1. Start Gajim
2. Right click on a user in the contact list information
3. Click the different tab to see what information was entered here
4. Click Close
5. Actions Quit

A21 Transfer files between clients

1. Start Gajim
2. Right click on the contact Send file
3. Browse and choose a file
4. Click Send
5. On the recipient of those files, an alert window will ask if the file should be

accepted. If the answer is positive, then the client can save the document. If
cancel is selected, the message is discarded56.

6. Actions Quit

A22 Retrieve communication history information

1. Start Gajim
2. Right click on the contact History (a dialogue box appears and searching

through the conversation is possible)
3. Click Close
4. Actions Quit

A23 Deny a contact from viewing your status for the current session

1. Start Gajim
2. Actions Advanced Privacy Lists
3. In the empty textfield, type the name of the list (private list)
4. Click New
5. Click Add

56 The sender is notified when the recipient does not allow the file transfer.

 112

6. Select Deny
7. In the JabberID textfield type testuser2@im.mysea.edu
8. Check the “to view my status” textbox
9. Click Save
10. Click Close
11. Select “Active for this session”
12. Click Close
13. Change the status of the testuser1
14. The status is still updated
15. Actions Advanced Privacy Lists
16. Select private list
17. Click Delete
18. Click Close
19. Actions Quit

A24 Deny a contact from sending you a message for the current session

1. Start Gajim
2. Actions Advanced Privacy Lists
3. In the empty textfield, type the name of the list (private list)
4. Click New
5. Click Add
6. Select Deny
7. In the JabberID textfield type testuser2@im.mysea.edu
8. Check the “to send me messages” textbox
9. Click Save
10. Click Close
11. Select “Active on each startup”
12. Click Close
13. Right click on the testuser1 from testuser2 machine and select Start Chat
14. Type some test in the window and press the enter key

A25 Register with an account that was deleted from both the server and the client (this
test assumes that there is a properly registered account already in the client. Refer to A1
to set up a valid account)

1. Start Gajim
2. Edit Accounts
3. Click on testuser1 (highlights it)
4. Click Remove
5. Choose “Remove account from Gajim and from server”
6. Click Remove (if the account was connected, then an additional dialogue box will

appear warning that removing the user will disconnect it)
7. Click OK
8. Click New
9. Choose “I want to register for a new account”
10. Click Forward

 113

11. Username: testuser1
12. Server: im.mysea.edu
13. Password: 1234
14. Retype Password: 1234
15. Click Forward (A dialogue box appears with the words “Conflict”)
16. Click Cancel
17. Click Close on the Accounts dialogue box
18. Actions Quit

A26 Register with an account that was deleted from the client only (this test assumes that
there is a properly registered account already in the client. Refer to A1 to set up a valid
account)

1. Start Gajim
2. Edit Accounts
3. Click on testuser1 (highlights it)
4. Click Remove
5. Choose “Remove account only from Gajim”
6. Click Remove (if the account was connected, then an additional dialogue box will

appear warning that removing the user will disconnect it)
7. Click OK
8. Click New
9. Choose “I want to register for a new account”
10. Click Forward
11. Username: testuser1
12. Server: im.mysea.edu
13. Password: 1234
14. Retype Password: 1234
15. Click Forward (A dialogue box appears with the words “Conflict”)
16. Click Cancel
17. Click Close on the Accounts dialogue box
18. Actions Quit

B. Presence management (B1 through B3) – All of those tests assumes that the user is
connected properly to the server.

B1 Change presence to Available (this test assumes that the current presence is a
presence other than available)

1. Right click on testuser1 Status Available (the icon reflect the status by
showing a green icon)

B2 Change presence to Free for Chat and Away and Not Available, and Busy, and
Invisible and Offline (this test assumes that the current presence is a presence other than
Free for Chat or Away, or Not Available, or Busy, or Invisible or Offline)

 114

1. Right click on testuser1 Status Free For Chat or Away or Not Available,
or Busy, or Invisible or Offline

2. Type a message57 (the icon reflect the status by showing a different icon that
the one that was displayed before)

3. Click OK

B3 Display offline contacts

1. View Show Offline Contacts

C. Instant Messaging (IM) management (C1 through C7)

C1 Start a chat with someone registered with the server on the contact list (this test
assumes that a valid user has been added to the contact list)

1. Right click on the contact Start Chat
2. Type some text in the window and press enter (the recipient receives the typed

message)
3. Close the window

C2 Start a chat with someone registered with the server not in the contact list (this test
assumes that there is another user on another machine that has not been already added in
the contact list, but that is properly registered with the server)

1. Actions Start Chat
2. Enter testuser1@im.mysea.edu
3. Click OK
4. Type some text in the window and press enter (the recipient receives the typed

message)
5. Close the windows on both clients

C3 Start a chat with someone by mistyping their JID (user ID)

1. Actions Start Chat
2. Enter test&user1@im.mysea.edu
3. Click OK (An alert window with Invalid JID pop up on the screen)
4. Click OK

C4 Start a chat with a contact by mistyping their JID (server name)

1. Actions Start Chat
2. Enter testuser1@im.myea.edu
3. Click OK
4. Type some text in the window and press enter (The chat window specifies that

the service is unavailable)

57 The message typed is displayed under the user presence to all of those that subscribe to its presence.

 115

C5 Have multiple chat sessions with different valid contacts (this test assumes that two contacts
have been added to the list58)

1. Right click on the contact Start Chat
2. Type some text in the window and press enter (the recipient receives the typed

message)
3. Repeat step 1 and 2 with another contact in the list (the window at the initiator of the

message will have tabs for each user name).
4. Close the window when done

C6 Have multiple chat session with the same valid contact

1. Right click on the contact Start Chat
2. Type some text in the window and press enter (the recipient receives the typed

message)
3. Repeat step 1 and 2 with the same contact in the list59
4. Close the window when done

C7 Add Emoticons to chat messages

1. Right click on the contact Start Chat
2. Click on the face icon button (bottom left of the window) and choose an icon
3. Type some text in the window and press enter (the recipient receives the typed

message including the icon60)
4. Close the window when done

D. Multi-User Chat (MUC) management (D1 through D15)

D1 Create a default61 group chat with a valid JID

1. Start Gajim
2. Right click on a user Group Chat Join New Group Chat
3. Nickname: testuser1
4. Room: private@conference.im.mysea.edu
5. Click Join
6. Click OK
7. Connect to the private group chat room with another client using the steps 1-5
8. Type some text in both windows and press enter
9. Close the group chat room windows on both clients

D2 Create a default group chat with an invalid JID

1. Right click on a user Group Chat Join New Group Chat62

58 Creating two separate accounts in one of the client will substitute for a separate machine.
59 The client engine or the server recognizes that the two participants are already in contact with

instant messaging and does not allow the creation of another window or tab.
60 Icon shows if the client program supports icons otherwise the text representation of the icon is

displayed
61 Default indicates that no special configuration were done
62 If the tests are performed in order, the textfields will be already filled with the information from the

previous test.

 116

2. Nickname: testuser1
3. Room: priv&ate@conference.im.mysea.edu
4. Click Join (An alert window with the words “invalid group chat Jabber ID”

popped on the screen)
5. Click OK
6. Click Cancel

D3. Join a private group chat with proper credentials (in this case the group chat requires
a password, but the user knows it) (this test assumes that a group chat that requires a
password to join has been created.) In order to create a room with a password, refer to
test D1 steps 1-6 and check the “A password is required to enter” and enter the password
of 1234

1. Right click on a user Group Chat Join New Group Chat
2. Nickname: testuser1
3. Room: private@conference.im.mysea.edu
4. Password: 1234
5. Click Join
6. Type some text and enter
7. Close the group chat room windows in both clients

D4. Join a private group chat without membership (in this case the group chat has a
member list that enforces access) (this test assumes that a group chat that was configured
to require an invitation in order to join has been created.) In order to create a room that
require an invitation, refer to test D1 steps 1-6 and check the “An invitation is required to
Enter” and click OK.

1. Right click on a user Group Chat Join New Group Chat
2. Nickname: testuser1
3. Room: private@conference.im.mysea.edu
4. Click Join (An alert window with the words “Unable to join group chat: You

are not in the members list” popped on the screen)
5. Click OK (a chat window will appear on the screen, but it is blank and the part

where the user can type is disabled.)

D5. Join a private group chat without the necessary credentials (in this case the group
chat requires a password) (this test assumes that a group chat that requires a password to
join has been created.) In order to create a room with a password, refer to test D1 steps 1-
6 and check the “A password is required to enter” and enter a password

1. Right click on a user Group Chat Join New Group Chat
1. Nickname: testuser1
2. Room: private@conference.im.mysea.edu
3. Click Join (An alert window with the words “Unable to join group chat: A

password is required” popped on the screen)
4. Click OK (a chat window will appear on the screen, but it is blank and the part

where the user can type is disabled.)

 117

D6. Join a publicly open group chat (this test assumes that an open group chat was
created.) In order to create an open group chat room refers to test D1 steps 1-6.

1. Right click on a user Group Chat Join New Group Chat
2. Nickname: testuser1
3. Room: public@conference.im.mysea.edu
4. Click Join
5. Type some text and press enter
6. In another client, repeat steps 1-5
7. Close the group chat room windows in both clients

D7. Configure a group chat room after it is created (as its creator)

1. Right click on a user Group Chat Join New Group Chat
2. Nickname: testuser1
3. Room: private@conference.im.mysea.edu
4. Click Join
5. Click the Actions button (left of the send button) Configure Room
6. Make all of the adjustment necessary
7. Click OK
8. Close the window

D8. Configure the room after it is created as a normal user (this test assumes that a public
chat room was created. Refer to D1 to create a default chat room)

1. Right Click on testuser1 Group Chat Join New Group Chat
2. Nickname: testuser1
3. Room: private@conference.im.mysea.edu
4. Click Join
5. Click the Actions button (left of the send button) Configure Room (the

configuration option is grayed out)
6. Close the window

D9. Invite contact to join private group chat rooms (this test assumes that both a private
room requiring an invitation called private was created – refer to D1 steps 1-6 – and a
contact was added to the contact list – refer to A11)

1. Right click on contact Invite to… Private63
2. In the receiving party, open the message announcing that testuser1 has invited

you to the group chat private@conference.im.mysea.edu
3. Click accept
4. Click Join
5. Type some text and click enter

D10. Communicating in authorized group chat rooms

1. Right click on a user Join New Group Chat either create a new group
chat, or use the default from previous tests

63 Note that the name Private is the name of the room that was created prior.

 118

2. Click Join
3. Type test and enter once done
4. Repeat bullet 1 through 3 for another user (the window will replicate the text

typed in the different windows and indicate when users log in)

D11. Ban a user from a group chat room when having the role of moderator/creator (this
test assumes that a chat room – public or private – was created and that at least two users
can join it. Refer to D1 to create a default chat room)

1. Right Click on a user Group Chat Join New Group Chat either create a
new group chat, or use the default from previous tests

2. Click Join
3. Type some text and enter
4. Repeat step 1 through 5 for another user
5. In the right portion of the room, right click on testuser2 Occupant Actions

 Ban
6. Enter a reason (optional)
7. Click OK (the room will reflect the decision by indicating that “testuser2 has

been banned: reason here)64 The entry text area will immediately become
grayed out in the banned user.

D12. Ban a user from a group chat room when not having the role of moderator/creator

1. Right click on a user Group Chat Join New Group Chat use the
default from previous tests

2. Click Join
3. Type some text and enter
4. Repeat step 1 through 5 for another user
5. In the window of a user other than the one who created the room, Right click

on testuser2 Occupants Actions Ban (This is grayed out)65

D13. Joining a group chat room after been banned (this test assumes that D11 was just
performed)

1. Right Click on the user that got banned in D11 Group Chat Join New
Group Chat use the default from previous tests

2. Click Join (An alert window with Unable to join group chat appears with the
explanation: “You are banned from this group chat”)

3. Click OK
4. Close the window

D14. Kick (temporarily remove) a user from a group chat room when having the role of
moderator/creator

1. Right Click on a user Group Chat Join New Group Chat

64 Banning creates a rule in the room configuration and the only way to get rid of the ban is for the

owner of the room to remove that rule from the configuration file
65 Only the moderator (the creator of the room) is allows to make those decisions

 119

2. Nickname: testuser1
3. Room: private@conference.im.mysea.edu
4. Click Join
5. Type some text and enter
6. Repeat step 1 through 5 for another user
7. In the right portion of the room, right click on testuser2 Occupants Actions

 Kick
8. Enter a reason (optional)
9. Click OK (the room will reflect the decision by indicating that “testuser2 has

been kicked: reason here) The entry text area will immediately become grayed
out in the banned user.

10. Close the window of the chat room in the client that was just kicked

D15. Joining a group chat room after been kicked (this assumes that test D14 was just
run)

1. In the user that was kicked, Right Click on that user Group Chat Join
New Group Chat

2. Accept the information already filled in as it is the last room that was joined
3. Type some text and enter66
4. Close the group chat room windows in both clients

E. Service discovery and Jabber User Directory (JUD) management (E1 through
E2)

E1. List the rooms available and the number of participants in each room

1. Start Gajim
2. Right click on a user Discover Services…
3. Double click on Public Chatrooms
4. Click Close

E2. Access the user directory (this test is performed with the PSI version 0.9 client
[eme03] and assumes that at least one user is properly registered with the server)

1. Start PSI
2. Click on the PSI icon (bottom left button) Browse Services
3. Double click on jud.thesis.nps.edu
4. Search for users
5. Click Close
6. Click on the PSI icon (bottom left button) Quit

66 Kicking is not a permanent state, but based on sessions. It is only necessary to join the room again

to be allowed to converse again in that room.

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

LIST OF REFERENCES

[1] Business Wire, “XMPP Emerging as Chat Standard for the Federal
Government; Jabber, Inc.’s Expanding Public Sector Footprint Enhanced by
XMPP Expertise,” 2006
http://findarticles.com/p/articles/mi_m0EIN/is_2006_August_14/ai_n1662056
5. August 14, Last visited 5/20/08.

[2] P. Saint-Andre (Editor), “Extensible Messaging and Presence Protocol

(XMPP): Core,” October 2004, http://www.faqs.org/rfcs/rfc3920.html. Last
visited 6/2/08.

[3] P. Saint-Andre (Editor), “Extensible Messaging and Presence Protocol

(XMPP): Instant Messaging and Presence,” October 2004,
http://www.xmpp.org/rfcs/rfc3921.html. Last visited 6/2/08.

[4] “AIM.com,” http://dashboard.aim.com/aim. Last visited 6/9/08.

[5] IBM Lotus Sametime, “Your onramp to Unified Communications and

Collaboration,” http://www-306.ibm.com/software/lotus/sametime/ Last
visited 6/9/08.

[6] “ICQ Everybody, Everywhere,” http://www.icq.com/ Last visited 6/9/08.

[7] IRC.org, “Internet Relay Chat (IRC) Your true Internet Relay Chat source,”

http://www.irc.org/ Last visited 6/9/08.

[8] J. Oikarinen and D. Reed, “Internet Relay Chat Protocol,” May 1993,

http://www.faqs.org/rfcs/rfc1459.html,. Last visited 5/20/08.

[9] Wikipedia, “Instant Messaging,”

http://en.wikipedia.org/wiki/Instant_messaging, February 2008. Last visited
6/9/08.

[10] GoogleTalk portal, http://www.google.com/talk/, Last visited 4/29/08.

[11] Skype portal, http://www.skype.com/, Last visited 4/3/08.

[12] Client-server, http://en.wikipedia.org/wiki/Client-server, Last visited 5/29/08.

[13] The NOPSIN Group Inc., “freePCTech,”

http://freepctech.com/pc/002/networks002.shtml, Last visited 5/22/08.

 122

[14] C. Kalt, “Internet Relay Chat: Architecture,” April 2000,
http://www.faqs.org/rfcs/rfc2810.html, Last visited 5/20/08.

[15] C.J.P. Moschovitis, H. Poole, T. Schuyler, and T.M. Senft, “History of the

Internet,” 1999, www.abc-clio.com, Last visited 4/22/08.

[16] C. Kalt, “Internet Relay Chat: Channel Management,” April 2000,

http://www.faqs.org/rfcs/rfc2811.html, Last visited 5/20/08.

[17] C. Kalt, “Internet Relay Chat: Client Protocol,” April 2000,

http://www.faqs.org/rfcs/rfc2812.html, Last visited 5/20/08.

[18] C. Kalt, “Internet Relay Chat: Server Protocol,” April 2000,

http://www.faqs.org/rfcs/rfc2813.html, Last visited 5/20/08.

[19] T. Van Vleck, “The History of Electronic Mail,”

http://www.multicians.org/thvv/mail-history.html, Last visited 5/29/08.

[20] J. Scott, “BBS Documentary,” www.bbsdocumentary.com. Last visited

4/3/08.

[21] M. Day, Lotus, S. Rosenberg, dynamicsoft, H. Sugano, Fujistsu, “A Model for

Presence and Instant Messaging,” February 2000,
http://www.ietf.org/rfc/rfc2778.txt, Last visited 5/20/08.

[22] M. Day, Lotus, S. Aggarwal, Microsoft, G. Mohr, Activerse, J. Vincent, Into

Networks, “Instant Messaging / Presence Protocol Requirements,” February
2000, http://www.ietf.org/rfc/rfc2779.txt, Last visited 5/29/08.

[23] P. Saint-Andre (Editor), “End-to-End Signing and Object Encryption for the

Extensible Messaging Presence Protocol,” October 2004,
http://www.ietf.org/rfc/rfc3923.txt, Last visited 5/29/08.

[24] Webopedia.com, Streaming,

http://www.webopedia.com/TERM/s/streaming.html, Last visited 4/25/08.

[25] P. Saint-Andre (Editor), “Mapping the Extensible Messaging and Presence

Protocol (XMPP) to Common Presence and Instant Messaging (CPIM),”
October 2004, http://www.rfc-archive.org/getrfc.php?rfc=3922, Last visited
5/20/08.

[26] P. Hoffman, IMC & VPNC, M. Blanchet, Viagenie, “Preparation of

Internationalized Strings (“stringprep”),” December 2002,
http://www.ietf.org/rfc/rfc3454.txt, Last visited 5/8/08.

 123

[27] XMPP Standards Foundation, “XMPP Extensions,”
http://www.xmpp.org/extensions/ Last visited 6/10/08.

[28] C.E. Irvine, T.E. Levin, T.D. Nguyen, D. Shifflett, J. Khosalim, P.C. Clark, A.

Wong, F. Afinidad, D. Bibighaus, J. Sears, “Overview of a High Assurance
Architecture for Distributed Multilevel Security,” in Proceedings of the 5th
IEEE Systems, Man and Cybernetics Information Assurance Workshop,
United States Military Academy, 2004, pp. 38-45.

[29] D.E. Bell, L. LaPadula, “Secure Computer System: Unified Exposition and

Multics Interpretation” Tech. Rep. ED-TR-75-306, MITRE Corp., Hanscom
AFB, MA 1975.

[30] K.J. Biba, “Integrity Considerations for Secure Computer Systems” Tech.

Rep. ED-TR-76-372, MITRE Corp., 1977.

[31] BAE SYSTEMS, “Integrated Information Assurance: The XTS-400,”
http://www.digitalnet.com/solutions/information_assurance/xts400_trusted_sy
s.htm, Last visited 6/9/08.

[32] BAE SYSTEMS, “Systems Information Technology. STOP Version 7:

Platform for Secure Cross-Domain Application Development,”
http://www.baesystems.com/ProductsServices/bae_prod_csit_xtsstop7.html,
Last visited 6/1/08.

[33] Wikipedia.org, http://en.wikipedia.org/wiki/XTS-400, Last visited 6/2/08.

[34] Jabber Organization, http://jabber.org, Last visited 6/2/08.

[35] XMPP Standards Foundation, http://www.xmpp.org, Last visited 6/5/08.

[36] ejabberd, www.ejabberd.im, Last visited 4/20/08.

[37] jabberd14 Project, http://jabberd.org/, Last visited 6/10/08.

[38] jabberd2 Project, http://jabberd2.xiaoka.com/, Last visited 5/29/08.

[39] Openfire, http://www.igniterealtime.org/projects/openfire/index.jsp, Last

visited 4/30/08.

[40] TIGASE.ORG, http://www.tigase.org/, Last accessed 5/29/08.

[41] The Linux Documentation Project, http://tldp.org/HOWTO/archived/WWW-

HOWTO/WWW-HOWTO-7.html, Last visited 4/30/08.
[42] PSI, http://psi-im.org/, Last visited 5/22/08.

 124

[43] Gajim, www.gajim.org, Last visited 6/2/08.

[44] Pidgin, http://www.pidgin.im/, Last visited 5/2/08.

[45] The Jabber Manual Team, “Jabberd1.4.x Administration Guide,” 2004,

http://jabberd.org/1.4/doc/adminguide, Last visited 6/18/08.

[46] jabberd14, http://jabberd.org/news/ Last visited 6/10/08.

[47] Van Emery, “Using jabberd as a Private Instant Messaging Service,” 2003,

www.vanemery.com/Linux/Jabber/jabberd.html, Last visited 6/2/08.

[48] jas, “The GNU Transport Layer Security Library,” 02/18/08,

http://www.gnu.org/software/gnutls, Last visited 3/18/08.

[49] B. Barney, “POSIX Threads Programming,” 5/19/08

https://computing.llnl.gov/tutorials/pthreads/, Last visited 6/18/08.

[50] “GNU IDN Library – Libidn,” http://josefsson.org/libidn/, Last visited 6/2/08.

[51] “[jadmin] jabberd14-1.6.1.1 make error (asn1) hints please,”

http://mail.jabber.org/pipermail/jadmin/2007-October/099695.html, Last
visited 5/12/08.

[52] C. Cooper, “Using Expat,”

http://www.xml.com/pub/a/1999/09/expat/index.html. 1999, Last visited
6/2/08.

[53] “The Expat XML Parser,” http://expat.sourceforge.net/, Last visited 6/2/08.

[54] “Expat XML Parser,” http://sourceforge.net/projects/expat/, Last visited

6/2/08.

[55] S. Josefsson, (Libidn) “README-alpha,” 2006.

[56] pkg-config, http://pkg-config.freedesktop.org/wiki/, Last visited 6/2/08.

[57] The GTK+ Project, http://www.gtk.org/, Last visited 5/6/08.

[58] Description page. http://invisible-island.net/autoconf/autoconf.html, Last

visited 5/29/08.

[59] Free Software Foundation, Inc., “GNU Libtool – The GNU Portable Library

Tool,” 2008, http://www.gnu.org/software/libtool/libtool.html, Last visited
6/2/08.

 125

[60] “The GTK+ Project,” http://www.gtk.org/overview.html, Last visited 5/8/08.

[61] “GNOME: The Free Software Desktop Project,”

http://www.gtk.org/overview.html, Last visited 5/9/08.

[62] P. Curtis, “[jadmin] No platform-settings file for Yahoo Transport on OS X

Tiger server,” 2005, http://mail.jabber.org/pipermail/jadmin/2005-
May/095555.html, Last visited 6/2/08.

[63] International Organization for Standardization, “Numeric representations of

Dates and Time,” http://www.iso.org/iso/date_and_time_format, Last visited
5/10/08.

[64] “jabberd14-implementation of an instant messaging server using the

Jabber/XMPP protocols in C,” http://jabberd.org/codedoc/index.html, Last
visited 4/30/08.

[65] “dialback Directory Reference,”

http://jabberd.org/codedoc/dir_91b33e64cab139823edc5b7ff9a483a2.html,
Last visited 5/8/08.

[66] “dnsrv Directory Reference,”

http://jabberd.org/codedoc/dir_b9a8410acaca88619d34b480129ce1cb.html,
Last visited 5/8/08.

[67] “jabberd Directory Reference,”

http://jabberd.org/codedoc/dir_116879c8fe121c441b553a37f7e1633b.html#_d
etails, Last visited 5/8/08.

[68] “Base Directory Reference,”

http://jabberd.org/codedoc/dir_688d28322d6e15e35aa9ec64cb1dee18.html,
Last visited 5/8/08.

[69] “lib Directory Reference,”

http://jabberd.org/codedoc/dir_10d906a57e0bab9a2643f82b1f899021.html,
Last visited 5/8/08.

[70] “jsm Directory Reference,”

http://jabberd.org/codedoc/dir_b1173ba875483b984821b47913be8f59.html,
Last visited 5/8/08.

[71] “pthsock Directory Reference,”

http://jabberd.org/codedoc/dir_96d8aed2629794315b23680b88cc5ba5.html,
Last visited 5/8/08.

 126

 [72] “xdb_file Directory Reference,”
http://jabberd.org/codedoc/dir_f16246d04214d4769785e5aa1f02f9dd.html,
Last visited 5/8/08.

[73] “xdb_sql Directory Reference,”

http://jabberd.org/codedoc/dir_f91b2057b7b5bf1da07aff031960dcd8.html,
Last visited 5/8/08.

[74] jabber 1.4.x configuration file. http://jabberd.org/1.4/doc/conf Last visited

5/22/08.

[75] “Tigase Test Suite,” http://projects.tigase.org/testsuite/trac, Last accessed

5/29/08.

[76] D. Puryear, “The Jabber Test Suite,” 2003,

http://sourceforge.net/projects/jabbertest/, Last accessed 5/23/08.

[77] “Jabber Test Suite (JabberTest),” http://sourceforge.net/projects/jabbertest,

Last visited 5/23/08.

[78] XMPP Standards Foundation, “XEP-0001,”

http://www.xmpp.org/extensions/xep-0001.html#states-Draft, Last visited
5/28/08.

[79] Naval Postgraduate School Center for Information System Security Studies

and Research, “XTS-400: System Administration Final Installation and Setup
STOP 7.0 beta 1,” April 2008.

 127

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. John Campbell
National Security Agency
Fort Meade, MD

4. Steve Davis
NRO
Chantilly, VA

5. Dr. Tim Fossum
National Science Foundation

6. Dr. Greg Larson
IDA
Alexandria, VA

7. Dr. John Monastra
Aerospace Corporation
Chantilly, VA

8. Boyd Fletcher

SPAWAR
San Diego, CA

9 Dr. Cynthia E. Irvine

Naval Postgraduate School
Monterey, CA

10 Thuy D. Nguyen

Naval Postgraduate School
Monterey, CA

11. Claire LaVelle

Naval Postgraduate School
Monterey, CA

